Volumetric Real-Time MRI at 0.55 Tesla
0.55 特斯拉的体积实时 MRI
基本信息
- 批准号:10611241
- 负责人:
- 金额:$ 52.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D ultrasoundAdultAirAnatomyArrhythmiaBasic ScienceBreathingCardiacCardiac Catheterization ProceduresCardiac OutputCardiac ablationCardiovascular systemCaringCatheterizationCathetersClinicalCollaborationsDataDepositionDetectionDevelopmentDevicesDiagnostic ImagingDiseaseDisease ProgressionEarly DiagnosisEngineeringEvaluationExtramural ActivitiesGoalsHeartHeatingImageImaging technologyInterventionIonizing radiationMagnetic Resonance ImagingManualsMethodsModalityMonitorMorphologic artifactsMotionMovementMyocardialNational Heart, Lung, and Blood InstituteObstructive Sleep ApneaOrganOutcomePatient CarePatientsPatternPerformancePhysiologic pulseProceduresRelapsing polychondritisRelaxationResearchResolutionSamplingScanningScientistSleep Apnea SyndromesSliceSurfaceSystemTechniquesTechnologyTestingTimeTissuesTracheaTrainingTranslatingUltrasonographyUnited States National Institutes of HealthVariantVisualizationWorkX-Ray Computed Tomographyclinical centerclinical translationcohortdata acquisitiondeep learningflexibilityheart functionheart imagingimage reconstructionimaging approachimaging modalityimprovedinnovationinstrumentlung imagingmagnetic fieldmillisecondnext generationnovelprogramsprospective testradio frequencyreal-time imagesreconstructionrespiratory imagingsimulationsoft tissuespatiotemporalsynergismtemporal measurementultrasoundvolunteer
项目摘要
PROJECT SUMMARY
This project will develop volumetric real-time magnetic resonance imaging (RT-MRI) technology on a novel 0.55
Tesla platform to provide improved assessment of the heart and airway in motion. Rationale: Volumetric real-
time imaging by computed tomography and ultrasound have had a profound impact on our ability to understand
and evaluate disorders involving movement and of moving organs. These modalities each have limitations that
include ionizing radiation, obstructed visualization angles, and limited contrast. MRI is currently capable of slice-
by-slice RT-MRI and a leap to volumetric would enable improved assessment of a wide range of heart and airway
disorders. Innovation: NIH has developed a 0.55 Tesla MRI instrument, that we argue will enable a breakthrough
in RT-MRI performance. This is due to substantially reduced off-resonance effects, substantially reduced tissue
heating, and a leap in scan efficiency due to increased flexibility in the MRI pulse sequence. We propose an
innovative intramural-extramural partnership and interdisciplinary team to explore this potential. Approach: The
objective of this project is to develop and translate low-latency volumetric RT-MRI methods that provide
unprecedented spatio-temporal resolution and spatial coverage and will benefit several heart and airway
applications. Specifically, we will: 1- develop and technically validate volumetric RT-MRI data acquisition at the
0.55T field strength, 2- develop and technically validate low-latency volumetric RT-MRI reconstruction, artifact
mitigation, and segmentation, and 3- clinically evaluate volumetric RT-MRI in two unique patient cohorts at the
NIH Clinical Center where it is likely to make an immediate impact on care—patients with tracheomalacia and
relapsing polychondritis (N=20), and patients undergoing MRI-guided invasive cardiac catheterization (N=20).
Broader Impact: The proposed volumetric RT-MRI technology is generalizable and could benefit many additional
applications, such as cardiac function assessment in arrhythmia, and upper airway assessment in obstructive
sleep apnea. The intramural and extramural labs each offer unique and complementary expertise to achieve this
ambitious technical development. Creation of this new intramural-extramural collaboration will benefit both
research programs and lead to new synergies that include basic research, clinical translation, and training of the
next generation of scientists and engineers.
项目摘要
该项目将在一个新的0.55英寸的空间上开发体积实时磁共振成像(RT-MRI)技术。
Tesla平台,以提供对运动中的心脏和气道的改进评估。依据:体积真实的-
计算机断层扫描和超声波的时间成像对我们理解
并评估涉及运动和运动器官的疾病。这些模式都有局限性,
包括电离辐射、受阻可视角度和有限的对比度。MRI目前能够切片-
逐层RT-MRI和体积的飞跃将能够改善对广泛心脏和气道的评估
紊乱创新:NIH开发了一种0.55特斯拉的MRI仪器,我们认为这将实现突破。
在RT-MRI表现上。这是由于大大减少了非共振效应,大大减少了组织
加热,以及由于MRI脉冲序列中增加的灵活性而导致的扫描效率的飞跃。我们提出了一个
创新的校内-校外伙伴关系和跨学科团队,以探索这一潜力。方法:The
本项目的目标是开发和翻译低延迟容积RT-MRI方法,
前所未有的时空分辨率和空间覆盖范围,将有利于几个心脏和气道
应用.具体来说,我们将:1-开发和技术验证体积RT-MRI数据采集在
0.55T场强,2-开发和技术确认低延迟容积RT-MRI重建,伪影
缓解和分割,以及3-临床评价两个独特患者队列中的体积RT-MRI,
美国国立卫生研究院临床中心,它可能会立即影响护理患者与气管软化,
复发性多囊炎(N=20)和接受MRI引导的侵入性心导管插入术的患者(N=20)。
更广泛的影响:所提出的体积RT-MRI技术是可推广的,可以使许多其他
应用,例如心律失常中的心脏功能评估,以及阻塞性呼吸道疾病中的上气道评估。
睡眠呼吸暂停校内和校外实验室都提供独特的和互补的专业知识,以实现这一目标
雄心勃勃的技术发展。这种新的内外部合作的建立将有利于双方
研究计划,并导致新的协同作用,包括基础研究,临床翻译和培训的
下一代的科学家和工程师。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adrienne Campbell其他文献
Adrienne Campbell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adrienne Campbell', 18)}}的其他基金
相似海外基金
CAREER: Super-Resolution 3D Ultrasound Imaging of Brain Activity
职业:大脑活动的超分辨率 3D 超声成像
- 批准号:
2237309 - 财政年份:2023
- 资助金额:
$ 52.56万 - 项目类别:
Continuing Grant
Super-resolution 3D ultrasound tomography for material microstructure characterisation
用于材料微观结构表征的超分辨率 3D 超声断层扫描
- 批准号:
2815310 - 财政年份:2023
- 资助金额:
$ 52.56万 - 项目类别:
Studentship
PFI-RP: Towards Democratization of Ultrafast 3D Ultrasound Imaging
PFI-RP:迈向超快 3D 超声成像的民主化
- 批准号:
2329865 - 财政年份:2023
- 资助金额:
$ 52.56万 - 项目类别:
Continuing Grant
Machine Learning on 3D Ultrasound Images and Wearable IoT Data for Brace Treatment of Spinal Deformities
基于 3D 超声图像和可穿戴物联网数据的机器学习用于脊柱畸形的支架治疗
- 批准号:
RGPIN-2020-04415 - 财政年份:2022
- 资助金额:
$ 52.56万 - 项目类别:
Discovery Grants Program - Individual
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10708132 - 财政年份:2022
- 资助金额:
$ 52.56万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10587466 - 财政年份:2022
- 资助金额:
$ 52.56万 - 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
- 批准号:
10670956 - 财政年份:2022
- 资助金额:
$ 52.56万 - 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
- 批准号:
10509562 - 财政年份:2022
- 资助金额:
$ 52.56万 - 项目类别:
3D Ultrasound Vascular Flow Imaging System
3D超声血管血流成像系统
- 批准号:
547186-2020 - 财政年份:2022
- 资助金额:
$ 52.56万 - 项目类别:
Postgraduate Scholarships - Doctoral
3D ultrasound-based mechatronic guidance system
基于3D超声的机电一体化引导系统
- 批准号:
574470-2022 - 财政年份:2022
- 资助金额:
$ 52.56万 - 项目类别:
University Undergraduate Student Research Awards