Intense visible white-light pulse generation in gas-filled hollow-core fibers pumped by Yb-lasers for multi-color time-resolved spectroscopy

由 Yb 激光器泵浦的充气空心光纤中产生强烈的可见白光脉冲,用于多色时间分辨光谱

基本信息

项目摘要

Ultrashort, high-energy laser pulses have delivered unprecedented capabilities in driving and probing ultrafast dynamics in various materials and nowadays represent the cornerstone of a multitude of research fields in modern science. However, despite the three decades of progress of laser frequency conversion and amplification technology, the generation of energetic few-cycle visible white light (VIS-WL) pulses (wavelength: 400-800 nm) is still very challenging. Such pulses are regarded as an essential tool for the temporal investigation of e.g., biological energy transfer processes and photo-generated charge carrier dynamics in semiconductors. Current technology typically requires extremely complex alignment and apparatus that lower the conversion efficiency and deteriorate the beam quality. Also, the maximum achievable pulse energy is limited in such systems, due to the damage threshold of the employed nonlinear crystals. In this context, gas-filled hollow-core fibers (HCF) represent an appealing alternative nonlinear platform, as they accommodate high-energy pulses and provide a straightforward spectral extension, together with excellent output beam characteristics. Prof. Razzari's group at INRS-EMT has recently obtained a promising preliminary result of ultrafast VIS-WL pulse formation in an HCF pumped by ytterbium (Yb) laser pulses. The thorough investigation of this novel VIS-WL generation mechanism in an HCF and its exploitation into a marketable setup are the key target of this project. To achieve these goals, an overall team of 1 PhD student and 2 postdocs, helped by 2 intern students every year, will work on the project full time. These personnel will be supervised by Prof. Razzari and will closely interact with our industrial partner (few-cycle Inc.). Eventually, our partner company will be able to introduce an affordable and customizable multi-color system relying on an industrial-grade Yb laser to study the response of a variety of materials on ultrafast time-scales, thus allowing a large number of academic and industrial labs to have access to a technology currently available only in a handful of top-notch research centers around the world.
超短高能激光脉冲在驱动和探测各种材料的超快动力学方面提供了前所未有的能力,如今代表了现代科学众多研究领域的基石。然而,尽管激光频率转换和放大技术已经取得了三十年的进步,但是产生高能少周期可见白色光(VIS-WL)脉冲(波长:400-800 nm)仍然是非常具有挑战性的。这样的脉冲被认为是时间研究的基本工具,生物能量转移过程和半导体中的光生载流子动力学。目前的技术通常需要极其复杂的对准和装置,这降低了转换效率并恶化了光束质量。此外,由于所采用的非线性晶体的损伤阈值,在这样的系统中可实现的最大脉冲能量是有限的。在这种情况下,充气空芯光纤(HCF)代表了一个有吸引力的替代非线性平台,因为它们可以容纳高能脉冲,并提供直接的光谱扩展,以及出色的输出光束特性。INRS-EMT的Razzari教授的小组最近在镱(Yb)激光脉冲泵浦的HCF中获得了超快VIS-WL脉冲形成的有希望的初步结果。深入研究这种新的VIS-WL产生机制在HCF和开发成一个可销售的设置是这个项目的主要目标。为了实现这些目标,一个由1名博士生和2名博士后组成的整体团队,每年由2名实习生帮助,将全职从事该项目。这些人员将由Razzari教授监督,并将与我们的工业合作伙伴(few-cycle Inc.)密切互动。 最终,我们的合作伙伴公司将能够推出一种经济实惠且可定制的多色系统,该系统依赖于工业级Yb激光器来研究各种材料在超快时间尺度上的响应,从而使大量的学术和工业实验室能够获得目前仅在世界各地少数顶尖研究中心提供的技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Razzari, LucaL其他文献

Razzari, LucaL的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Razzari, LucaL', 18)}}的其他基金

System for the Generation of Tunable Ultrafast Optical Pulses (Phase I)
可调谐超快光脉冲生成系统(第一阶段)
  • 批准号:
    571993-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Idea to Innovation

相似海外基金

Investigating Dark Matter in Semi-Visible Jets at CERN
欧洲核子研究中心研究半可见喷流中的暗物质
  • 批准号:
    2907986
  • 财政年份:
    2024
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Studentship
Care on the move: active travel and the everyday mobilities of children with non-visible disabilities
移动护理:非明显残疾儿童的积极旅行和日常活动
  • 批准号:
    ES/X010880/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Research Grant
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326905
  • 财政年份:
    2024
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Standard Grant
Solar Eclipse-Induced Changes in the Ozone Layer Observed with UV/VIS (UltraViolet–VISible Spectroscopy) Radiometer
使用 UV/VIS(紫外可见光谱)辐射计观测日食引起的臭氧层变化
  • 批准号:
    2328210
  • 财政年份:
    2024
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326904
  • 财政年份:
    2024
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Standard Grant
CAREER: Bridging Infrared and Visible Photonics with Chip-ready Nonlinear and Quantum Metadevices
职业:通过芯片就绪的非线性和量子元设备桥接红外和可见光光子学
  • 批准号:
    2339271
  • 财政年份:
    2024
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Continuing Grant
Seeing the light: high-power visible-light generation using silicate fibre
看到光:使用硅酸盐光纤产生高功率可见光
  • 批准号:
    DP230100617
  • 财政年份:
    2023
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Discovery Projects
Hafnia-based platform for high-index visible and UV integrated photonics
基于 Hafnia 的高折射率可见光和紫外集成光子学平台
  • 批准号:
    2301389
  • 财政年份:
    2023
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Standard Grant
Water splitting system based on visible light responsive photocatalysts and carbon-based conductors
基于可见光响应光催化剂和碳基导体的水分解系统
  • 批准号:
    22KF0160
  • 财政年份:
    2023
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of visible-light-induced cyclization reactions inside a molecular flask
分子瓶内可见光诱导环化反应的发展
  • 批准号:
    22KF0104
  • 财政年份:
    2023
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了