Scalable and accessible photonics for next-generation quantum networks

用于下一代量子网络的可扩展且可访问的光子学

基本信息

  • 批准号:
    RGPIN-2020-06784
  • 负责人:
  • 金额:
    $ 3.35万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Technology based on quantum mechanics can enable high-performance information processing, future-proof secure communications, and highly sensitive metrology. Quantum optics, thanks to photons' robustness, versatility and long coherence times, provides the ideal platform for these realizations. However, photons are still not widely used in commercial applications as their detection probability (and thus their detection/processing rate) decreases exponentially with a growing number of photons in the quantum state. Thus, while information processing power for solid-state platforms improves with a larger number of qubits (two-level systems), it degrades in photonics, making realizations mostly lab-confined and expensive. Extending and commercializing quantum photonics also necessitates robust, yet scalable optical systems, as well as low-loss quantum information processing. This Discovery project aims to address these urgent needs by making use of well-established telecommunications and chip-based infrastructures, while expanding the extremely successful research lines I have developed at INRS-EMT in integrated nonlinear and quantum optics. Specifically, my team has demonstrated a route to overcome scaling issues by greatly increasing the information content stored in only a few photons through using high-dimensional (qudit, i.e. the d-level extension of a qubit) state encoding. For N photons, such qudits have an information capacity that scales as d^N, thus enabling high processing powers and detection efficiencies with a low photon number. The proposed project, comprised of two main parts, is a timely capitalization on the momentum of these recent achievements: (1) We will develop high-performance and low-footprint sources of complex photon states, investigating both well-established and newly-introduced materials. Quantum information processing implemented in scalable, low-loss, fiber-based components (e.g. interferometers, modulators) will be studied to achieve complex, yet accessible, photon-based operations. The development of these photon generation and manipulation blocks, targeted in practical and commercializable platforms, will be critical in enabling the deployment of these systems in out-of-the-lab applications (e.g. quantum secure communications). (2) In analogy to future quantum telecommunications networks, where photons propagate and interfere, the injection of photons into programmable fiber-loops (i.e. synthetic lattice structures) will be studied to gain new insights into how quantum states behave in commercial systems which feature much higher costs. Investigating specifically how e.g. quantum state information capacities change with complex propagation will establish important know-how for future network and quantum state design. Our Discovery program will reinforce the strong Canadian presence we helped establish in integrated nonlinear and non-classical photonics, towards commercializable and affordable quantum technologies.
基于量子力学的技术可以实现高性能信息处理,未来的安全通信以及高度敏感的计量。由于光子的鲁棒性,多功能性和较长的连贯时间,量子光学元件为这些实现提供了理想的平台。但是,由于其检测概率(因此其检测/处理速率)在商业应用中仍未广泛使用,随着量子状态下的光子数量越来越多。因此,尽管固态平台的信息处理能力可以通过大量的Qubit(两级系统)改善,但它会降低光子学,从而使实现大多是实验室构造且昂贵的。扩展和商业化量子光子学还需要稳健但可扩展的光学系统以及低损耗的量子信息处理。该发现项目旨在通过利用良好的电信和基于芯片的基础架构来满足这些紧急需求,同时扩大了我在INRS-EMT在集成的非线性和量子光学方面开发的非常成功的研究线。具体来说,我的团队通过使用高维(即Qudit,即Qubit的D级扩展)编码来大大增加几个光子中存储的信息内容,从而展示了一条克服缩放问题的途径。对于n个光子,这种Qudits具有缩放为D^n的信息能力,从而实现了较低的光子数量的高处理能力和检测效率。拟议的项目由两个主要部分组成,是对这些最新成就的势头的及时资本化:(1)我们将开发出复杂光子状态的高性能和低脚印来源,并研究了已建立良好的材料和新知识的材料。将研究以可扩展的,低损坏的基于纤维的组件(例如干涉仪,调节仪)实现的量子信息处理,以实现复杂但易于访问的基于光子的操作。这些光子生成和操纵块的开发以实用和商业化的平台为目标,对于使这些系统的部署在实行应用程序外(例如,量子安全通信)至关重要。 (2)类似于未来的量子电信网络,在该网络中,光子传播和干扰,将研究光子将光子注入可编程的光纤环(即合成晶格结构)中,以获得新的见解,以了解量子在商业系统中如何表现更高成本的量子状态。专门研究例如随着复杂的传播,量子状态信息能力的变化将为未来网络和量子状态设计建立重要的知识。我们的发现计划将加强我们在综合的非线性和非经典光子学中建立的强大加拿大存在,以实现可商业化且负担得起的量子技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Morandotti, Roberto其他文献

All-fibre phase filters with 1-GHz resolution for high-speed passive optical logic processing.
  • DOI:
    10.1038/s41467-023-37472-2
  • 发表时间:
    2023-03-31
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Kaushal, Saket;Aadhi, A.;Roberge, Anthony;Morandotti, Roberto;Kashyap, Raman;Azana, Jose
  • 通讯作者:
    Azana, Jose
Conductive Coupling of Split Ring Resonators: A Path to THz Metamaterials with Ultrasharp Resonances
  • DOI:
    10.1103/physrevlett.112.183903
  • 发表时间:
    2014-05-09
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Al-Naib, Ibraheem;Hebestreit, Erik;Morandotti, Roberto
  • 通讯作者:
    Morandotti, Roberto
Accessible Light Bullets via Synergetic Nonlinearities
  • DOI:
    10.1103/physrevlett.102.203903
  • 发表时间:
    2009-05-22
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Burgess, Ian B.;Peccianti, Marco;Morandotti, Roberto
  • 通讯作者:
    Morandotti, Roberto
Enhanced Q-factor in Optimally Coupled Macrocell THz Metamaterials: Effect of Spatial Arrangement
Active terahertz two-wire waveguides
  • DOI:
    10.1364/oe.22.022340
  • 发表时间:
    2014-09-22
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Mridha, Manoj Kumar;Mazhorova, Anna;Morandotti, Roberto
  • 通讯作者:
    Morandotti, Roberto

Morandotti, Roberto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Morandotti, Roberto', 18)}}的其他基金

Smart Photonics
智能光子学
  • 批准号:
    CRC-2016-00199
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs
Brain-inspired photonic computing for efficient next-generation telecommunications networks
用于高效下一代电信网络的受大脑启发的光子计算
  • 批准号:
    550313-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Alliance Grants
Canada-UK Quantum Technologies Call: Connectorizing Integrated Quantum Photonics Devices
加拿大-英国量子技术呼吁:连接集成量子光子器件
  • 批准号:
    556324-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Alliance Grants
Smart Photonics
智能光子学
  • 批准号:
    CRC-2016-00199
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs
Canada-UK Quantum Technologies Call: Development of Highly Efficient, Portable, and Fiber-Integrated Photonic Platforms Based on Micro-Resonators
加拿大-英国量子技术呼吁:开发基于微谐振器的高效、便携式、光纤集成光子平台
  • 批准号:
    556325-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Alliance Grants
Scalable and accessible photonics for next-generation quantum networks
用于下一代量子网络的可扩展且可访问的光子学
  • 批准号:
    RGPIN-2020-06784
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Smart Photonics
智能光子学
  • 批准号:
    1000231381-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs
Frequency domain nonlinear optical conversion for efficient high-dimensional quantum processing
用于高效高维量子处理的频域非线性光学转换
  • 批准号:
    521496-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Strategic Projects - Group
High-density time encoding of entangled photons for ultrafast telecom-compatible quantum secure communication
纠缠光子的高密度时间编码,用于超快电信兼容的量子安全通信
  • 批准号:
    RTI-2021-00317
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Research Tools and Instruments
Randomness scaling in photonic quantum random number generators (Market Study)
光子量子随机数发生器中的随机性缩放(市场研究)
  • 批准号:
    560511-2021
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Idea to Innovation

相似国自然基金

基于区块多链的边缘物联网可搜索跨域访问模型
  • 批准号:
    62262073
  • 批准年份:
    2022
  • 资助金额:
    33.00 万元
  • 项目类别:
    地区科学基金项目
面向区块链访问控制的可净化函数加密研究
  • 批准号:
    62272038
  • 批准年份:
    2022
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
面向区块链访问控制的可净化函数加密研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于区块多链的边缘物联网可搜索跨域访问模型
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
面向云存储数据的弹性访问控制方法研究
  • 批准号:
    61902123
  • 批准年份:
    2019
  • 资助金额:
    29.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: GEO OSE Track 2: Project Pythia and Pangeo: Building an inclusive geoscience community through accessible, reusable, and reproducible workflows
合作研究:GEO OSE 第 2 轨道:Pythia 和 Pangeo 项目:通过可访问、可重用和可重复的工作流程构建包容性的地球科学社区
  • 批准号:
    2324304
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
Practical guidance on accessible statistical methods for different estimands in randomised trials
随机试验中不同估计值的可用统计方法的实用指南
  • 批准号:
    MR/Z503770/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Research Grant
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-SCREEN:基于人工智能的现实基础设施,用于筛查和预测年龄相关性黄斑变性 (AMD) 的进展,提供可及的共享护理
  • 批准号:
    10102692
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    EU-Funded
Sensing Music Interactions from the Outside-In: Accessible Innovation Fusing Wearable Technology and Physical Prototyping
从外到内感知音乐交互:融合可穿戴技术和物理原型的无障碍创新
  • 批准号:
    MR/X036103/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Fellowship
CAREER: Making Digital Imagery Accessible to Blind and Low-Vision Users via Audiohaptic Dioramas
职业:通过视听立体模型让盲人和弱视用户可以访问数字图像
  • 批准号:
    2339788
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了