Online Convex Optimization Applied to Electrical Power Delivery

在线凸优化应用于电力输送

基本信息

  • 批准号:
    575533-2022
  • 负责人:
  • 金额:
    $ 1.27万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
无摘要- Aucun sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lupien, JeanLucJL其他文献

Lupien, JeanLucJL的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Interplay between Convex and Nonconvex Optimization for Control
职业:凸和非凸优化控制之间的相互作用
  • 批准号:
    2340713
  • 财政年份:
    2024
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Continuing Grant
Number Theory, Potential Theory, and Convex Optimization
数论、势论和凸优化
  • 批准号:
    2401242
  • 财政年份:
    2024
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Standard Grant
Collaborative Research: Consensus and Distributed Optimization in Non-Convex Environments with Applications to Networked Machine Learning
协作研究:非凸环境中的共识和分布式优化及其在网络机器学习中的应用
  • 批准号:
    2240789
  • 财政年份:
    2023
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Standard Grant
CAREER: Demystifying Deep Machine Learning Models using Convex Optimization for Reliable AI
职业:使用凸优化揭开深度机器学习模型的神秘面纱,实现可靠的人工智能
  • 批准号:
    2236829
  • 财政年份:
    2023
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Continuing Grant
Collaborative Research: Consensus and Distributed Optimization in Non-Convex Environments with Applications to Networked Machine Learning
协作研究:非凸环境中的共识和分布式优化及其在网络机器学习中的应用
  • 批准号:
    2240788
  • 财政年份:
    2023
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Standard Grant
Computation of Diverse Solutions in Discrete Convex Optimization Problems
离散凸优化问题的多样解的计算
  • 批准号:
    23K10995
  • 财政年份:
    2023
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Delineating the network effects of mental disorder-associated variants using convex optimization methods
使用凸优化方法描述精神障碍相关变异的网络效应
  • 批准号:
    10674871
  • 财政年份:
    2022
  • 资助金额:
    $ 1.27万
  • 项目类别:
Structured convex optimization with applications
结构化凸优化及其应用
  • 批准号:
    RGPIN-2019-07199
  • 财政年份:
    2022
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Discovery Grants Program - Individual
Designing Faster Algorithms by Connecting Structural Combinatorics and Convex Optimization
通过连接结构组合学和凸优化来设计更快的算法
  • 批准号:
    557770-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Delineating the network effects of mental disorder-associated variants using convex optimization methods
使用凸优化方法描述精神障碍相关变异的网络效应
  • 批准号:
    10504516
  • 财政年份:
    2022
  • 资助金额:
    $ 1.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了