Improving reproducibility in MRI with vendor-neutral acquisitions and transparent workflows
通过供应商中立的采集和透明的工作流程提高 MRI 的可重复性
基本信息
- 批准号:RGPIN-2022-05308
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Myelin is a key component of the central nervous system. The myelin sheaths insulate axons with a triple effect: allowing fast electrical conduction, protecting the axon, and providing structural support. Myelin is also relevant from a clinical perspective, given that demyelination is often observed in several neurological diseases such as multiple sclerosis Quantitative magnetic resonance imaging (qMRI) assigns units to MR images, making it possible to quantify myelin content across MRI scanners. The one thing that makes a broad clinical adoption of quantitative MRI difficult is the lack of transparency and standardization in qMRI protocols. Most qMR techniques are developed in-house and lack the proper framework to deploy on multiple scanners manufactured by different MRI vendors. To overcome this problem, we propose to develop a vendor-neutral platform that uses open-source pulse sequence development ("Spinbench"), real-time interaction with the scanner, and an open-source image analysis toolbox (qMRLab.org) that aims to bring quantitative MRI under one umbrella. Our long-term goal is to improve the accuracy and reliability of qMRI maps across vendors, in phantoms and in vivo. We will start by focusing on fundamental qMRI parameters (T1), and slowly expand to incorporate other qMRI modalities sensitive to myelin. Using this framework, we will (i) Develop a standardized pipeline for processing qMRI maps; (ii) Validate our pipeline in objects designed to mimic human tissue (phantoms); (iii) Conduct a multi-vendor MRI study of the myelin content in healthy subjects and multiple sclerosis (MS) patients, showing that the protocols are reproducible and clinically feasible in healthy and pathological nervous tissue. MS will be used as a proof of concept because its characteristics enable the comparison of different types of myelin degeneration, from focal inflammation to global neurodegeneration. By reproducing myelin measurements across vendors, we will make it possible for clinicians to use standardized tools for diagnosis, follow-up, and prognosis. Additionally, this will make it possible to remove vendor-dependent bias from artificial intelligence (AI) algorithms. Finally, we plan to generalize this platform to other pathologies and body parts, eventually building an `App store' for quantitative MRI that will be vendor-agnostic, open-source and accessible to clinicians worldwide.
髓鞘是中枢神经系统的关键组成部分。髓鞘绝缘轴突具有三重作用:允许快速电传导,保护轴突,并提供结构支持。从临床角度来看,髓鞘也是相关的,因为脱髓鞘通常在几种神经系统疾病中观察到,例如多发性硬化症定量磁共振成像(qMRI)为MR图像分配单位,使得可以在MRI扫描仪上量化髓鞘含量。使定量MRI难以在临床上广泛采用的一件事是qMRI协议缺乏透明度和标准化。大多数qMR技术都是内部开发的,缺乏适当的框架来部署在不同MRI供应商制造的多台扫描仪上。为了克服这个问题,我们建议开发一个供应商中立的平台,该平台使用开源脉冲序列开发(“Spinbench”),与扫描仪的实时交互,以及旨在将定量MRI置于一个保护伞下的开源图像分析工具箱(qMRLab.org)。我们的长期目标是提高供应商、体模和体内qMRI图的准确性和可靠性。我们将首先关注基本的qMRI参数(T1),然后慢慢扩展到对髓鞘敏感的其他qMRI模式。使用该框架,我们将(i)开发用于处理qMRI图的标准化管道;(ii)在设计用于模拟人体组织的对象(phantom)中建立管道;(iii)对健康受试者和多发性硬化症(MS)患者的髓鞘含量进行多供应商MRI研究,表明该方案在健康和病理神经组织中具有可重现性和临床可行性。MS将被用作概念验证,因为它的特征使得能够比较不同类型的髓鞘变性,从局灶性炎症到全局神经变性。通过跨供应商复制髓鞘测量,我们将使临床医生能够使用标准化工具进行诊断,随访和预后。此外,这将使人工智能(AI)算法中消除依赖于供应商的偏见成为可能。最后,我们计划将这个平台推广到其他病理和身体部位,最终建立一个定量MRI的“应用程序商店”,该应用程序商店将是供应商不可知的,开源的,可供全球临床医生使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stikov, Nikola其他文献
Vendor-neutral sequences and fully transparent workflows improve inter-vendor reproducibility of quantitative MRI
- DOI:
10.1002/mrm.29292 - 发表时间:
2022-06-03 - 期刊:
- 影响因子:3.3
- 作者:
Karakuzu, Agah;Biswas, Labonny;Stikov, Nikola - 通讯作者:
Stikov, Nikola
The Myelin-Weighted Connectome in Parkinson's Disease.
- DOI:
10.1002/mds.28891 - 发表时间:
2022-04 - 期刊:
- 影响因子:8.6
- 作者:
Boshkovski, Tommy;Cohen-Adad, Julien;Misic, Bratislav;Arnulf, Isabelle;Corvol, Jean-Christophe;Vidailhet, Marie;Lehericy, Stephane;Stikov, Nikola;Mancini, Matteo - 通讯作者:
Mancini, Matteo
Promise and pitfalls of g-ratio estimation with MRI
- DOI:
10.1016/j.neuroimage.2017.08.038 - 发表时间:
2018-11-15 - 期刊:
- 影响因子:5.7
- 作者:
Campbell, Jennifer S. W.;Leppert, Ilana R.;Stikov, Nikola - 通讯作者:
Stikov, Nikola
Cross-relaxation imaging of human articular cartilage.
人类关节软骨的交叉解释成像。
- DOI:
10.1002/mrm.22865 - 发表时间:
2011-09 - 期刊:
- 影响因子:3.3
- 作者:
Stikov, Nikola;Keenan, Kathryn E.;Pauly, John M.;Smith, R. Lane;Dougherty, Robert F.;Gold, Garry E. - 通讯作者:
Gold, Garry E.
Insights from the IronTract challenge: Optimal methods for mapping brain pathways from multi-shell diffusion MRI.
- DOI:
10.1016/j.neuroimage.2022.119327 - 发表时间:
2022-08-15 - 期刊:
- 影响因子:5.7
- 作者:
Maffei, Chiara;Girard, Gabriel;Schilling, Kurt G.;Aydogan, Dogu Baran;Adluru, Nagesh;Zhylka, Andrey;Wu, Ye;Mancini, Matteo;Hamamci, Andac;Sarica, Alessia;Teillac, Achille;Baete, Steven H.;Karimi, Davood;Yeh, Fang-Cheng;Yildiz, Mert E.;Gholipour, Ali;Bihan-Poudec, Yann;Hiba, Bassem;Quattrone, Andrea;Quattrone, Aldo;Boshkovski, Tommy;Stikov, Nikola;Yap, Pew-Thian;de Luca, Alberto;Pluim, Josien;Leemans, Alexander;Prabhakaran, Vivek;Bendlin, Barbara B.;Alexander, Andrew L.;Landman, Bennett A.;Canales-Rodriguez, Erick J.;Barakovic, Muhamed;Rafael-Patino, Jonathan;Yu, Thomas;Rensonnet, Gaetan;Schiavi, Simona;Daducci, Alessandro;Pizzolato, Marco;Fischi-Gomez, Elda;Thiran, Jean-Philippe;Dai, George;Grisot, Giorgia;Lazovski, Nikola;Puch, Santi;Ramos, Marc;Rodrigues, Paulo;Prckovska, Vesna;Jones, Robert;Lehman, Julia;Haber, Suzanne N.;Yendiki, Anastasia - 通讯作者:
Yendiki, Anastasia
Stikov, Nikola的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stikov, Nikola', 18)}}的其他基金
A multi-modal framework for characterizing myelin microstructure
用于表征髓鞘微结构的多模式框架
- 批准号:
RGPIN-2016-06774 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
A multi-modal framework for characterizing myelin microstructure
用于表征髓鞘微结构的多模式框架
- 批准号:
RGPIN-2016-06774 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
A multi-modal framework for characterizing myelin microstructure
用于表征髓鞘微结构的多模式框架
- 批准号:
RGPIN-2016-06774 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
A multi-modal framework for characterizing myelin microstructure
用于表征髓鞘微结构的多模式框架
- 批准号:
RGPIN-2016-06774 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
A multi-modal framework for characterizing myelin microstructure
用于表征髓鞘微结构的多模式框架
- 批准号:
RGPIN-2016-06774 - 财政年份:2016
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
The Genetics of Personalized Functional MRI Networks
个性化功能 MRI 网络的遗传学
- 批准号:
10650032 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Mapping lifespan trajectories of white matter in autism and improving reproducibility through shared diffusion MRI data
通过共享扩散 MRI 数据绘制自闭症患者白质的寿命轨迹并提高可重复性
- 批准号:
10648969 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Prognostic MRI and Blood Markers of Wound Healing in Diabetic Foot Ulcers
糖尿病足溃疡伤口愈合的预后 MRI 和血液标志物
- 批准号:
10720218 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
NexGen 7T MRI scanner for mesoscale brain imaging: Integration and Dissemination
用于中尺度脑成像的 NexGen 7T MRI 扫描仪:整合与传播
- 批准号:
10725586 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
User-friendly Analysis Platform for Decentralized Multi-site Diffusion MRI Studies
用于分散式多站点扩散 MRI 研究的用户友好分析平台
- 批准号:
10724720 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Multiparametric PET/MRI Assessment of Mast Cell Stabilization Effects on Inflammaging and Glucose Utilization in Infarcted Myocardium
多参数 PET/MRI 评估肥大细胞稳定对梗塞心肌炎症和葡萄糖利用的影响
- 批准号:
10650676 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Development and Evaluation of Advanced Non-Contrast Perfusion MRI for Monitoring Treatment Response in Brain Metastases
用于监测脑转移治疗反应的先进非对比灌注 MRI 的开发和评估
- 批准号:
10716949 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
MRI-Based Renal Oximetry in Early Diabetic Kidney Disease
基于 MRI 的肾血氧饱和度在早期糖尿病肾病中的应用
- 批准号:
10593684 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Racially-associated MRI analysis and modeling for predicting aggressive prostate cancer
用于预测侵袭性前列腺癌的种族相关 MRI 分析和建模
- 批准号:
10659602 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别: