Data-driven Friction Models for Simulation and Material Fabrication

用于模拟和材料制造的数据驱动摩擦模型

基本信息

  • 批准号:
    571411-2021
  • 负责人:
  • 金额:
    $ 3.28万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Friction modeling is an important consideration when designing machines, controlling robots, and for many healthcare applications. Examples include constructing more comfortable prostheses, predicting the physical behaviour of objects during robotic manipulation, or understanding human-machine interactions between a surgeon and a medical robot. However, standard friction models fail to capture the rich behaviour arising from interactions between real-world surfaces. Furthermore, common models, such as Coulomb, are empirical and hence they are limited in their capability for computational design applications based on surface microgeometry and related material properties.This research project is about developing a better understanding of the physical world and simulating friction using a data-driven approach. Furthermore, an improved understanding will lead to improved models for frictional simulation that can faithfully reproduce real-world behaviour. We then plan to leverage these simulations for computational inverse design applications, where frictional surfaces may be fabricated according to specifications or tasks defined in a numerical optimization pipeline.Our project combines interdisciplinary themes and a team of experts with complementary skills in contact simulation, data-driven modeling for virtual environments, and computational fabrication. The main objectives will be achieved by three sub-projects, which are summarized below.1. Measurement and Analysis of Friction: Humans have the amazing capability to identify the frictional properties of objects simply from the sense of touch. Inspired by this, we will use scans of surface microgeometry to infer frictional behaviour between surfaces by developing data-driven friction models. We will also use robots to collect large quantities of sliding data of different objects and artificial surfaces to help with the ultimate challenge of solving the inverse modelling problem-- designing friction from micro-surface structures. Additionally, this dataset will provide an invaluable resource for validating and benchmarking physics simulation involving friction, which is of interest for many research communities.2. Geometry driven and Data-driven Models of Frictional Behaviour: Formulating novel friction models and new computational approaches will be a key component of our work. We are motivated by recent machine learning techniques for their ability to predict and regress complex, non-linear functions. Aggregate friction effects arising from micro-surface interactions represent such a function, and we therefore intend to leverage modern techniques to learn mappings from surface micro-geometry to aggregate friction behaviour. The result will be a new class of models for realistic friction simulation.3. Computational Fabrication of Materials by Inverse Friction Modeling: Although friction is a functional aspect of many physical systems, methods for designing and fabricating rough surfaces that meet user-specified functional requirements are nearly non-existent. This presents us with an interesting research opportunity to develop inverse modeling and optimization techniques that are based on our data-driven friction models that will facilitate new technologies for automatic design and fabrication of friction. This has a wide range of applications, such as creating artificial skin for gloves to better grasp, designing task-specific shoe soles (e.g., for curling or other sports), or fabricating mechanical macrostructure 'coatings' of objects without using chemicals.
在设计机器、控制机器人和许多医疗保健应用时,摩擦建模是一个重要的考虑因素。例如,构建更舒适的假肢,预测机器人操作过程中物体的物理行为,或者理解外科医生和医疗机器人之间的人机交互。然而,标准的摩擦模型无法捕捉到现实世界表面之间相互作用产生的丰富行为。此外,常见的模型,如库仑,是经验的,因此它们在基于表面微观几何和相关材料特性的计算设计应用中的能力受到限制。这个研究项目是为了更好地理解物理世界,并使用数据驱动的方法模拟摩擦。此外,改进的理解将导致改进的摩擦模拟模型,可以忠实地再现现实世界的行为。然后,我们计划将这些模拟用于计算逆设计应用,其中摩擦表面可以根据数值优化管道中定义的规格或任务制造。我们的项目结合了跨学科的主题和专家团队,他们在接触模拟、虚拟环境的数据驱动建模和计算制造方面具有互补的技能。主要目标将通过三个次级项目实现,概述如下1。摩擦的测量和分析:人类有一种惊人的能力,仅仅通过触觉就能识别物体的摩擦特性。受此启发,我们将通过开发数据驱动的摩擦模型,使用表面微观几何扫描来推断表面之间的摩擦行为。我们还将使用机器人收集不同物体和人造表面的大量滑动数据,以帮助解决反建模问题的终极挑战-从微表面结构设计摩擦。此外,该数据集将为验证和基准化涉及摩擦的物理模拟提供宝贵的资源,这是许多研究团体感兴趣的。几何驱动和数据驱动的摩擦行为模型:制定新的摩擦模型和新的计算方法将是我们工作的关键组成部分。我们被最近的机器学习技术所激励,因为它们能够预测和回归复杂的非线性函数。微表面相互作用产生的聚集摩擦效应代表了这样一个函数,因此我们打算利用现代技术来学习从表面微观几何到聚集摩擦行为的映射。结果将为现实摩擦模拟提供一类新的模型。通过逆向摩擦建模的材料计算制造:尽管摩擦是许多物理系统的一个功能方面,但设计和制造满足用户指定功能要求的粗糙表面的方法几乎不存在。这为我们提供了一个有趣的研究机会,开发基于数据驱动的摩擦模型的逆建模和优化技术,这将促进自动设计和制造摩擦的新技术。这有广泛的应用,比如为手套创造更好的人造皮肤,设计特定任务的鞋底(例如,用于冰壶或其他运动),或者在不使用化学物质的情况下制造物体的机械宏观结构“涂层”。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrews, SheldonP其他文献

Andrews, SheldonP的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrews, SheldonP', 18)}}的其他基金

Efficient cutting and soft tissue simulation for virtual surgery
虚拟手术的高效切割和软组织模拟
  • 批准号:
    570702-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Alliance Grants

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
基于Cache的远程计时攻击研究
  • 批准号:
    60772082
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
  • 批准号:
    2314075
  • 财政年份:
    2024
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Continuing Grant
CAREER: CAS: Organic Photochemistry for Light-Driven CO2 Capture and Release
职业:CAS:光驱动二氧化碳捕获和释放的有机光化学
  • 批准号:
    2338206
  • 财政年份:
    2024
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Continuing Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Standard Grant
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
  • 批准号:
    2346707
  • 财政年份:
    2024
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341994
  • 财政年份:
    2024
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Standard Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
  • 批准号:
    2344109
  • 财政年份:
    2024
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Standard Grant
Cooperativity Driven Communication through Noncovalent Networks in Biomimetic Systems
仿生系统中通过非共价网络的协作驱动通信
  • 批准号:
    2404149
  • 财政年份:
    2024
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
  • 批准号:
    2331111
  • 财政年份:
    2024
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
  • 批准号:
    2340042
  • 财政年份:
    2024
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了