Limited-supervision for efficient medical image understanding

有效理解医学图像的有限监督

基本信息

  • 批准号:
    RGPIN-2020-07128
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Motivation: Deep learning models are driving progress in most visual recognition tasks, having an enormous and valuable potential in strategic domains such as health-care, autonomous driving or security. While these techniques have achieved outstanding performance when full-supervision is available, there exist two major obstacles to deploy these models in practical applications: poor generalization performance on new tasks and potential loss of learned knowledge when training on sequential tasks. Ideally, expanding a trained model to novel classes would require collecting and labeling additional data for new categories and restart the training procedure on the entire novel dataset. Nevertheless, this scenario is unrealistic. Thus, there is a need to bring current learning algorithms to a whole new level where models can quickly adapt to new tasks (i.e., with few labeled samples) and avoid knowledge forgetting. Research objectives and methodology: This research program will contribute to develop novel learning strategies for visual applications that address these two key challenges on deep models, with a primary focus on semantic segmentation. We intend to leverage unlabeled image data and prior domain knowledge, which have been underestimated in current approaches. This will enhance the representation power of deep models, leading to more generalizable features when few labeled data is available. To reduce the catastrophic interference between tasks -learned sequentially-, we will investigate novel attention mechanisms and the use of meta-memories, forcing the network to focus on class-agnostic parameters which will be retained across tasks. This research program will focus on medical images, given the unique challenges they bring to machine learning methods (e.g., complex shape, high variability, etc), and their tremendous potential for healthcare.   Impact: I expect that this program will lead to robust learning methods to understand and interpret the content of medical imaging data in different challenging scenarios, such as low labeled data regime and sequential training, e.g., in decentralized systems. In the long-term, I aim at transferring specific human behaviour to computers, from an image interpretation perspective, so that they can efficiently learn from few samples and avoid significant memory losses when learning different tasks sequentially. Robust interpretation of these images will provide invaluable support for diagnosis, treatment and follow-up of many diseases. Even though devised methods can be applied to a breadth of applications, we will prioritize neurology, cardiology and oncology, which have a high economical and social impact and for which we have a considerable experience. Beyond the application domain adopted in this program, these novel learning strategies will make an impact on the area of semantic segmentation, particularly when full annotations are scarce, in a broad span of disciplines.
动机:深度学习模型正在推动大多数视觉识别任务的进展,在医疗保健、自动驾驶或安全等战略领域具有巨大而宝贵的潜力。虽然这些技术在完全监督时取得了出色的性能,但在实际应用中部署这些模型存在两个主要障碍:新任务的泛化性能差,以及在顺序任务上训练时可能会丢失所学知识。理想情况下,将训练模型扩展到新类别需要收集和标记新类别的额外数据,并在整个新数据集上重新启动训练过程。然而,这种设想是不现实的。因此,需要将当前的学习算法带到一个全新的水平,其中模型可以快速适应新的任务(即,有少量标记的样本)并避免知识遗忘。 研究目标和方法:该研究计划将有助于为视觉应用开发新的学习策略,以解决深度模型的这两个关键挑战,主要关注语义分割。我们打算利用未标记的图像数据和先验领域知识,这在当前的方法中被低估了。这将增强深度模型的表示能力,从而在标记数据很少的情况下产生更多可推广的特征。为了减少任务之间的灾难性干扰(按顺序学习),我们将研究新的注意力机制和元记忆的使用,迫使网络专注于跨任务保留的类不可知参数。该研究计划将专注于医学图像,因为它们给机器学习方法带来了独特的挑战(例如,复杂的形状、高可变性等),以及它们在医疗保健方面的巨大潜力。 影响:我希望该计划将导致强大的学习方法,以理解和解释不同挑战性场景中的医学成像数据的内容,例如低标记数据制度和顺序训练,例如,在分散的系统中。从长远来看,我的目标是从图像解释的角度将特定的人类行为转移到计算机上,这样它们就可以有效地从少量样本中学习,并在顺序学习不同任务时避免严重的记忆损失。这些图像的强大解释将为许多疾病的诊断,治疗和随访提供宝贵的支持。尽管设计的方法可以应用于广泛的应用领域,但我们将优先考虑神经病学,心脏病学和肿瘤学,这些领域具有很高的经济和社会影响力,并且我们在这方面拥有丰富的经验。除了本计划中采用的应用领域之外,这些新颖的学习策略将对语义分割领域产生影响,特别是当完整的注释很少时,在广泛的学科范围内。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dolz, Jose其他文献

MRI and CT bladder segmentation from classical to deep learning based approaches: Current limitations and lessons
  • DOI:
    10.1016/j.compbiomed.2021.104472
  • 发表时间:
    2021-05-20
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Bandyk, Mark G.;Gopireddy, Dheeraj R.;Dolz, Jose
  • 通讯作者:
    Dolz, Jose
Constrained-CNN losses for weakly supervised segmentation
  • DOI:
    10.1016/j.media.2019.02.009
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Kervadec, Hoel;Dolz, Jose;Ben Ayed, Ismail
  • 通讯作者:
    Ben Ayed, Ismail
Multi-Scale Self-Guided Attention for Medical Image Segmentation
Supervised machine learning-based classification scheme to segment the brainstem on MRI in multicenter brain tumor treatment context
Deep CNN ensembles and suggestive annotations for infant brain MRI segmentation
  • DOI:
    10.1016/j.compmedimag.2019.101660
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Dolz, Jose;Desrosiers, Christian;Ben Ayed, Ismail
  • 通讯作者:
    Ben Ayed, Ismail

Dolz, Jose的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dolz, Jose', 18)}}的其他基金

Limited-supervision for efficient medical image understanding
有效理解医学图像的有限监督
  • 批准号:
    RGPIN-2020-07128
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Limited-supervision for efficient medical image understanding
有效理解医学图像的有限监督
  • 批准号:
    DGECR-2020-00299
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Limited-supervision for efficient medical image understanding
有效理解医学图像的有限监督
  • 批准号:
    RGPIN-2020-07128
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Robust and Efficient Learning of High-Resolution Brain MRI Reconstruction from Small Referenceless Data
从小型无参考数据中稳健而高效地学习高分辨率脑 MRI 重建
  • 批准号:
    10584324
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
  • 批准号:
    RGPIN-2018-04825
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
An effectiveness trial of WINGS+PrEP: a syndemic mHealth intervention to increase PrEP uptake among women impacted by heavy alcohol use and partner violence in the criminal legal system
WINGS PrEP 的有效性试验:一种同步流行病移动健康干预措施,旨在提高刑事法律系统中受酗酒和伴侣暴力影响的妇女对 PrEP 的采用
  • 批准号:
    10541692
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
Optimizing a Personalized Health Approach for Virtually Treating High-Risk Caregivers During COVID-19 and Beyond
优化个性化健康方法,以虚拟方式治疗 COVID-19 期间及之后的高风险护理人员
  • 批准号:
    10363469
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
A PILOT TRIAL OF TELEHEALTH ACTIVE VIDEO GAMING USING IMMERSIVE VIRTUAL REALITY ON CARDIOMETABOLIC HEALTH AMONG YOUTH WITH CEREBRAL PALSY
利用沉浸式虚拟现实进行远程健康主动视频游戏对脑瘫青少年心脏代谢健康的试点试验
  • 批准号:
    10375206
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
Efficient Two-Photon Voltage Imaging of Neuronal Populations at Behavioral Timescales
行为时间尺度神经元群的高效双光子电压成像
  • 批准号:
    10516906
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
Development of a telehealth medication-assisted treatment (MAT) system for patients with opioid use disorder (OUD)
为阿片类药物使用障碍 (OUD) 患者开发远程医疗药物辅助治疗 (MAT) 系统
  • 批准号:
    10322290
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
Proteomic aging in adults before and after cancer diagnosis
癌症诊断前后成人的蛋白质组老化
  • 批准号:
    10661835
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
  • 批准号:
    RGPIN-2018-04825
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient estimation of auditory sensitivity and cognitive status using spoken-digit tests.
使用口语数字测试有效估计听觉敏感性和认知状态。
  • 批准号:
    10542868
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了