High-resolution ultrasound imaging of micro-bubble cavitation using separate emission / reception transducers
使用单独的发射/接收换能器对微泡空化进行高分辨率超声成像
基本信息
- 批准号:571518-2021
- 负责人:
- 金额:$ 3.28万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The use of microbubbles or cavitation agents has enabled a wide and rapidly expanding field of research, with their benefits being repeatedly demonstrated, both in localized drug delivery applications and ultrasound image enhancement. In both cases, the oscillations of microbubbles are exploited but their effects may vary depending on the ultrasound frequency and intensity. At low ultrasound intensities, the microbubbles oscillate in a stable motion, also known as stable cavitation, inducing linear reflection and harmonic response to an incident ultrasound field. In contrast, at higher ultrasound intensities, inertial cavitation characterized by rapid growth and collapse of the microbubbles occur, and is thus characterized by an extended bandwidth. Since high intensity ultrasound can cause irreversible thermal damage to tissue, inertial cavitation should be prevented, and the local intensity thus controlled. For this purpose, a dual system capable of focusing and monitoring the local intensity is required at the targeted area.Existing dual systems are based on the use of classical beamforming algorithms and dedicated ultrasound probe used for both cavitation and imaging with a central frequency selected to induce stable cavitation. However, due to the limited bandwidth of existing ultrasound probes, the harmonic imaging is often limited to the second harmonic. Other technologies based on the separation of therapeutic and imaging transducers have been proposed in the literature for low- and high-intensity focused ultrasound. Those assemblies allow separation of emission and reception but are cumbersome and limited in resolution, and thus not adapted to drug delivery or imaging within complex loci where the access window is limited to 1 cm2 at best (spinal cord or temporal bone window for instance). Moreover, in the case of constrained areas, surroundings organs (bones, interfaces) induce reflections, refraction and diffusion of ultrasound waves that may influence the focusing and imaging performance. Based on these observations, two challenges should be addressed in order to better exploit contrast agents in the case of complex loci for both focalization and imaging: 1) the design and manufacturing of dedicated compact transducers and 2) the adaptation of imaging algorithms for cavitation regime tracking with a limited data bandwidth. This research project is thus organized following three distinct thrusts, conducted in parallel by 2 PhD and 1 MASc students, that aim 1) to propose novel compact transducer design based on separate emission / reception and spatial compounding, 2) to adapt existing micro-machining techniques for compact theranostic transducer assemblies and 3) to develop high-resolution correlation-based imaging techniques for contrast agent imaging in complex media. Different applications will be considered using numerical simulations and in-vitro phantoms such as: spinal cord for which multiple reflections at the vertebra impair the imaging and focusing, and contrast agent-based transcranial applications for which the phase and amplitude aberrations induced by the transmission through the skull will be considered. Real-time implementation for clinical and pre-clinical researchers on a commercial ultrasound prototyping platform (Verasonics Vantage) will be achieved for use in a further project.
微泡或空化剂的使用已经使得广泛且快速扩展的研究领域成为可能,其益处在局部药物递送应用和超声图像增强两者中被反复证明。在这两种情况下,利用微泡的振荡,但它们的效果可能会根据超声频率和强度而变化。在低超声强度下,微泡以稳定运动振荡,也称为稳定空化,引起对入射超声场的线性反射和谐波响应。相比之下,在较高的超声强度,惯性空化的特点是快速增长和崩溃的微泡发生,因此,其特征在于一个扩展的带宽。由于高强度超声可对组织造成不可逆的热损伤,因此应防止惯性空化,从而控制局部强度。现有的双系统是基于使用经典的波束形成算法和专用的超声探头,用于空化和成像,其中心频率被选择为诱导稳定的空化。然而,由于现有超声探头的有限带宽,谐波成像通常限于二次谐波。在文献中已经提出了用于低强度和高强度聚焦超声的基于分离治疗换能器和成像换能器的其他技术。这些组件允许发射和接收的分离,但是笨重且分辨率有限,因此不适于在进入窗口最多限于1cm 2(例如脊髓或颞骨窗口)的复杂位点内的药物递送或成像。此外,在受限区域的情况下,周围器官(骨骼、界面)引起超声波的反射、折射和扩散,这可能影响聚焦和成像性能。基于这些观察结果,为了在复杂位点的情况下更好地利用造影剂进行聚焦和成像,应该解决两个挑战:1)专用紧凑型换能器的设计和制造,以及2)用于具有有限数据带宽的空化状态跟踪的成像算法的适配。因此,该研究项目是按照三个不同的推动力组织的,由2名博士和1名MASc学生并行进行,其目的是1)提出基于单独发射/接收和空间复合的新型紧凑型换能器设计,2)使现有的微加工技术适用于紧凑的治疗诊断换能器组件,以及3)开发高分辨率的相关性。用于复杂介质中的造影剂成像的基于成像技术。将使用数值模拟和体外体模来考虑不同的应用,例如:脊椎处的多次反射会损害成像和聚焦的脊髓,以及将考虑通过颅骨传输引起的相位和振幅畸变的基于造影剂的经颅应用。将在商业超声原型平台(Verasonics Vantage)上为临床和临床前研究人员实现实时实施,以用于进一步的项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Quaegebeur, NicolasNCP其他文献
Quaegebeur, NicolasNCP的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
LIPUS促进微环境巨噬细胞释放CCL2诱导尿道周围平滑肌祖细胞定植与分化的机制研究
- 批准号:82370780
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
超声多信号融合高浓度液固/液液两相流在线测量方法研究
- 批准号:50706029
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
生物素-亲和素介导超声造影剂对乳腺癌血管生成分子靶向显像的研究
- 批准号:30670580
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
超声微泡造影剂携靶基因治疗及其声像图监控研究
- 批准号:30430230
- 批准年份:2004
- 资助金额:130.0 万元
- 项目类别:重点项目
超声微泡介导基因转染过程适宜空化效果的研究
- 批准号:30400419
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
超声微泡造影剂介导靶基因治疗梗死性血管病及机制研究
- 批准号:30370402
- 批准年份:2003
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Super-Resolution 3D Ultrasound Imaging of Brain Activity
职业:大脑活动的超分辨率 3D 超声成像
- 批准号:
2237309 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Continuing Grant
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Ultrasonic-tagged remote interferometric flowmetry for brain activity
用于大脑活动的超声波标记远程干涉流量测量
- 批准号:
10731255 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Multiparametric Tissue Characterization for Breast Cancer Screening Using Transmission and Reflection Ultrasound Tomography
使用透射和反射超声断层扫描进行乳腺癌筛查的多参数组织表征
- 批准号:
10675896 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
CAREER: Super-resolution Ultrasound Imaging for High-resolution Functional Mapping of the Brain
职业:用于大脑高分辨率功能绘图的超分辨率超声成像
- 批准号:
2237166 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Continuing Grant
5T-IV: photoacoustic needle with beacon pulse for ultrasound guided vascular access with Tool-Tip Tracking and Tissue Typing
5T-IV:带有信标脉冲的光声针,用于通过工具提示跟踪和组织分型进行超声引导血管通路
- 批准号:
10677283 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
High-Resolution Flow Imaging of Optic Nerve Head and Retrolaminar Microvascular Circulation
视神经乳头和层后微血管循环的高分辨率血流成像
- 批准号:
10649225 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Vector Flow Velocity Imaging of Human Placenta using Angle-resolved Ultrasound and Deep Learning
使用角度分辨超声和深度学习对人胎盘进行矢量血流速度成像
- 批准号:
10886180 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Mechanisms underlying the reduction in alcohol intake in response to low intensity targeting of the reward circuit
奖励回路低强度目标导致酒精摄入量减少的机制
- 批准号:
10733248 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别: