Development of a data-driven engine for the private investment sector
为私人投资领域开发数据驱动引擎
基本信息
- 批准号:CCARD-2022-00246
- 负责人:
- 金额:$ 10.93万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:CCI Applied Research and Development Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The enthusiasm for entrepreneurship has significantly increased in recent years in the high technology sector. As a result, the many innovative projects that are in the early stages of their life cycle sometimes need refinement both in terms of the value proposition they suggest and the structure of the company that supports them. It is in this perspective that private investment firms and accelerators like Holt play a critical role. They support start-up companies in defining their business model, tracing the technological roadmap and designing a marketing plan. However, given the premature nature of their intervention and the high level of risk of the investment, better control over the entire investment decision process is required: from the discovery of startups with high potential to the allocation of funds to these companies. Briefly, what the project aims to achieve is the development of a solution for venture capital firms, VC as a Service (or VCaaS), that would significantly improve the investment decision process of its users through a data-driven approach. This involves, among other things, establishing a portrait of companies by identifying all the factors that could have an impact on the quality of the investment. One of the important factors in this process is the quality and objectivity with which a startup's potential is assessed within its technological and economic context. This requires specialized experience and skills in the field of expertise of the company. Indeed, this assessment is carried out by investment experts (referred to as advisors), selected from a pool of collaborators with diverse profiles. The right match between a startup and advisor is therefore crucial for the success of an investment portfolio. Optimizing this process through data science requires the use of advanced artificial intelligence techniques in the fields of information retrieval systems, recommendation systems, natural language processing, supervised learning, as well as reinforcement learning.
近年来,在高技术部门,创业热情显著增加。因此,许多处于生命周期早期阶段的创新项目有时需要在它们所建议的价值主张和支持它们的公司结构方面进行改进。正是从这个角度来看,私人投资公司和加速器,如霍尔特发挥了关键作用。他们支持初创公司定义他们的商业模式,跟踪技术路线图和设计营销计划。然而,鉴于他们的干预的过早性和投资的高风险,需要更好地控制整个投资决策过程:从发现具有高潜力的初创公司到向这些公司分配资金。简而言之,该项目的目标是为风险投资公司开发一种解决方案,即VC即服务(或VCaaS),通过数据驱动的方法显着改善其用户的投资决策过程。除其他外,这涉及通过确定可能影响投资质量的所有因素来建立公司的肖像。这一过程中的一个重要因素是在技术和经济背景下评估初创企业潜力的质量和客观性。这需要公司专业领域的专业经验和技能。事实上,这项评估是由投资专家(称为顾问)进行的,他们是从具有不同背景的合作者中挑选出来的。因此,初创公司和顾问之间的正确匹配对于投资组合的成功至关重要。通过数据科学优化这一过程需要在信息检索系统、推荐系统、自然语言处理、监督学习以及强化学习等领域使用先进的人工智能技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Malette, MarieEve其他文献
Malette, MarieEve的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
半参数空间自回归面板模型的有效估计与应用研究
- 批准号:71961011
- 批准年份:2019
- 资助金额:16.0 万元
- 项目类别:地区科学基金项目
基于高频信息下高维波动率矩阵估计及应用
- 批准号:71901118
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
体数据表达与绘制的新方法研究
- 批准号:61170206
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
一类新Regime-Switching模型及其在金融建模中的应用研究
- 批准号:11061041
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Development of a Physics-Data Driven Surface Flux Parameterization for Flow in Complex Terrain
开发物理数据驱动的复杂地形流动表面通量参数化
- 批准号:
2336002 - 财政年份:2024
- 资助金额:
$ 10.93万 - 项目类别:
Continuing Grant
Development of Informatics Materials with an Awareness of the High School-University connection and a Learning Support Environment for Data-Driven Instruction
开发具有高中与大学联系意识的信息学材料和数据驱动教学的学习支持环境
- 批准号:
23H01019 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
- 批准号:
23K11177 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
- 批准号:
2324742 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Continuing Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
- 批准号:
2301173 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Continuing Grant
Development of edible sorbent therapies to mitigate dietary exposures to per- and polyfluoroalkyl substances (PFAS)
开发可食用吸附剂疗法以减少膳食中全氟烷基物质和多氟烷基物质 (PFAS) 的暴露
- 批准号:
10590799 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
- 批准号:
2301172 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Continuing Grant
Development of Data-Collection Algorithms and Data-Driven Control Methods for Guaranteed Stabilization of Nonlinear Systems with Uncertain Equilibria and Orbits
开发数据收集算法和数据驱动控制方法,以保证具有不确定平衡和轨道的非线性系统的稳定性
- 批准号:
23K03913 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research and development of vector image retrieval by cooperating knowledge-driven and data-driven models
知识驱动与数据驱动模型协同的矢量图像检索研究与开发
- 批准号:
23K11121 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of bioinformatic pipelines for multi omics data to model the effect of small molecule driven lipid metabolism on autophagy regulation
开发多组学数据的生物信息学管道,以模拟小分子驱动的脂质代谢对自噬调节的影响
- 批准号:
BB/Y512540/1 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Training Grant














{{item.name}}会员




