Statistical Methods for bias controlling in the analysis of rich data.

丰富数据分析中偏差控制的统计方法。

基本信息

  • 批准号:
    RGPIN-2018-04313
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Innovations in digital technology and use of electronic devices generate an increasing amount of rich data sets, such as large administrative databases, and intensive electronic diary data collected through real-time mobile data-capturing devices (handheld computers, smartphones, wearable devices etc.). Despite the richness of such new data sets, their utility remains limited due to various common data limitations that can introduce significant bias into statistical inference. The size and richness of these new kinds of data often outpace the computing resources needed for traditional approaches to controlling bias. In response to the strong demand from across different industries and sectors for developing appropriate analytic techniques for use with these new kinds of data, this research program aims to develop a set of novel and principled statistical methods for bias control that are also scalable for use in today's rich data environment. The proposed research will build on my work on developing new bias controlling methods for rich data that have been published in statistics and quantitative science journals, and have already had impact in various applied domains, such as life sciences, biomedical engineering, biostatistics, social and health sciences, economics and business management. The short-term objectives are to develop novel and tractable methods to: A) quantify the sensitivity of causal inference to nonignorable missingness, B) quantify the sensitivity to nonignorable censoring in the analysis of clustered survival data, C) perform distribution-free multiple imputation with variable selection to handle missing values in rich data applications, and D) overcome the issue of unmeasured key variables. The long-term goal of this proposed research program is to develop novel, general, robust and computationally feasible methodology to increase the quality, reliability, usability and accessibility of rich data. The methodological approach will include: i) analytical derivations for both simple and generalized models, ii) a study of performance through computer simulation experiments and iii) applications to real data sets. Training HQPs and disseminating new research results are two important aspects of the proposed research program. The research program will provide ample opportunities for interdisciplinary training in all aspects of statistical research and in developing and applying innovative statistical methods to unique data sets that span many industries and sectors, including government agencies, firms, nonprofit organizations and academic institutions. The proposed work will motivate and contribute new analytical methods for big data, and improve how researchers and practitioners in sciences and engineering in Canada and internationally can analyze and make use of rich data sets.
数字技术的创新和电子设备的使用产生了越来越多的丰富数据集,例如大型管理数据库,以及通过实时移动数据捕获设备(掌上电脑、智能手机、可穿戴设备等)收集的密集电子日记数据。尽管这些新数据集很丰富,但由于各种常见的数据限制,它们的效用仍然有限,这些限制可能会在统计推断中引入显著的偏差。这些新型数据的规模和丰富程度往往超过了控制偏差的传统方法所需的计算资源。为了响应不同行业和部门对开发用于这些新型数据的适当分析技术的强烈需求,本研究计划旨在开发一套新颖且有原则的偏差控制统计方法,这些方法在当今丰富的数据环境中也可扩展使用。这项拟议的研究将建立在我为统计和定量科学期刊上发表的丰富数据开发新的偏倚控制方法的工作基础上,这些数据已经在生命科学、生物医学工程、生物统计学、社会和健康科学、经济学和商业管理等各个应用领域产生了影响。短期目标是开发新的和易于处理的方法来:A)量化因果推理对不可忽略缺失的敏感性,B)量化聚类生存数据分析中不可忽略审查的敏感性,C)通过变量选择执行无分布的多重输入来处理丰富数据应用中的缺失值,D)克服未测量关键变量的问题。该研究计划的长期目标是开发新颖、通用、稳健和计算上可行的方法,以提高丰富数据的质量、可靠性、可用性和可访问性。方法方法将包括:i)简单模型和广义模型的分析推导,ii)通过计算机模拟实验研究性能,以及iii)应用于真实数据集。培训hqp和传播新的研究成果是拟议研究计划的两个重要方面。该研究计划将为统计研究的各个方面以及开发和应用创新统计方法的独特数据集提供充足的跨学科培训机会,这些数据集涵盖许多行业和部门,包括政府机构、公司、非营利组织和学术机构。拟议的工作将激励和贡献新的大数据分析方法,并改善加拿大和国际科学和工程领域的研究人员和实践者如何分析和利用丰富的数据集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

XIE, HUI其他文献

XIE, HUI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('XIE, HUI', 18)}}的其他基金

Statistical Methods for bias controlling in the analysis of rich data.
丰富数据分析中偏差控制的统计方法。
  • 批准号:
    RGPIN-2018-04313
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for bias controlling in the analysis of rich data.
丰富数据分析中偏差控制的统计方法。
  • 批准号:
    RGPIN-2018-04313
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for bias controlling in the analysis of rich data.
丰富数据分析中偏差控制的统计方法。
  • 批准号:
    RGPIN-2018-04313
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Statistical and Psychometric Methods for Measuring the Extent to Which Culturally Responsive Assessments Reduce Cultural Bias
用于衡量文化响应评估减少文化偏见程度的统计和心理测量方法
  • 批准号:
    2243041
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Developing Statistical Methods on Event History Data Subject to Data Complexities for HIV Disease Progression and Policy Evaluation
根据艾滋病毒疾病进展和政策评估的数据复杂性,开发事件历史数据的统计方法
  • 批准号:
    10700452
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Unsupervised Statistical Methods for Data-driven Analyses in Spatially Resolved Transcriptomics Data
空间分辨转录组数据中数据驱动分析的无监督统计方法
  • 批准号:
    10556351
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
Statistical Methods for Integration of Multiple Data Sources toward Precision Cancer Medicine
整合多个数据源以实现精准癌症医学的统计方法
  • 批准号:
    10415744
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
Unsupervised Statistical Methods for Data-driven Analyses in Spatially Resolved Transcriptomics Data
空间分辨转录组数据中数据驱动分析的无监督统计方法
  • 批准号:
    10350850
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
Statistical Methods for Integration of Multiple Data Sources toward Precision Cancer Medicine
整合多个数据源以实现精准癌症医学的统计方法
  • 批准号:
    10632124
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
Statistical Methods for Modern Evidence Syntheses with Multiple Biases
具有多重偏差的现代证据综合统计方法
  • 批准号:
    10338033
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
Statistical Methods for Modern Evidence Syntheses with Multiple Biases
具有多重偏差的现代证据综合统计方法
  • 批准号:
    10672230
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
Statistical Methods for bias controlling in the analysis of rich data.
丰富数据分析中偏差控制的统计方法。
  • 批准号:
    RGPIN-2018-04313
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for bias controlling in the analysis of rich data.
丰富数据分析中偏差控制的统计方法。
  • 批准号:
    RGPIN-2018-04313
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了