explainable AI, Data Analytics and Industrial Engineering Methods for Primary Care
用于初级保健的可解释的人工智能、数据分析和工业工程方法
基本信息
- 批准号:RGPIN-2019-05522
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
To tackle the chronic illnesses challenge, the applicant and his team introduced a new paradigm, referred to herein as Predict + Prevent, or P+P. Two important facts underlie this paradigm --- one is scientific and the other is historic. The scientific fact is that most chronic illnesses are actually preventable, if the appropriate lifestyle interventions are applied. The scientific evidence behind the preventability of chronic illnesses is overwhelming, as was reported during the last two decades in a number of articles in renowned medical journals. As for the historic fact, it is the result of a centuries-old paradigm we inherited from the way medicine (from Latin `medicina', which means `the art of healing') has traditionally been practiced: in general, patients need to wait until they get sick to go see their doctors who will then hopefully heal them. Now, with the availability of large sets of Electronic Medical Records data, and the tremendous advancements in information technology and data analytics, patients don't need to wait until they become sick. It is now possible to predict, at scale, the risk for a person to get ill with a chronic disease long before she contracts this disease. Hence the term "Predict" in the expression Predict + Prevent. The implementation of the P+P paradigm would consist of: (1) identify the high-risk patients, by predicting the likelihood for people to develop chronic diseases using EMR data, and then, (2) transfer lists of high-risk patients to a third-party, such as telehealth providers or human resources companies, who would then reach out to these patients (by e-mail, phone, social media, in-person or any other suitable method) and work with them on improving their lifestyle, to move them away from the onset of chronic diseases. In this proposal, the research will be focused mostly on the prediction side of the P+P paradigm and on limited aspects of prevention. More specifically, the proposed research project will address the following 5 projects listed below, using artificial intelligence methods and data analytics (e.g., decision trees, Markov chains with and without memory, Bayesian nets, mixture models, the EM algorithm, kernels and support vector machines, Monte Carlo simulations, unsupervised learning, and so on) for the first three projects, and industrial engineering methods (decision theory, engineering economics) for the last two projects: 1-Project on Prediction 1 - The single chronic disease cases 2-Project on Prediction 2 - Advanced stages and complications of a chronic disease 3-Project on Prediction 3 - Patients with multiple comorbidities 4-Project on Decision Sciences DS - Assessing the value of biomarkers information collected by doctors and their staff members. 5-Project on Engineering Economics EE - The economics of prevention This research will involve highly qualified personnel (HQP), namely 3 PhD students, 3 Master's students and 1 Lab technician.
为了应对慢性疾病的挑战,申请人和他的团队引入了一个新的模式,在这里称为预测+预防,或P+P。这一范式的基础是两个重要事实——一个是科学的,另一个是历史的。科学事实是,如果采取适当的生活方式干预措施,大多数慢性病实际上是可以预防的。正如过去二十年来著名医学期刊上的一些文章所报道的那样,慢性病可预防的科学证据是压倒性的。至于这一历史事实,这是我们从医学(来自拉丁语“medicina”,意思是“治疗的艺术”)的传统实践方式中继承的一个数百年历史的范式的结果:一般来说,病人需要等到他们生病了才去看医生,然后他们才有希望治愈他们。现在,随着大量电子医疗记录数据的可用性,以及信息技术和数据分析的巨大进步,患者不需要等到他们生病了。现在有可能大规模地预测一个人在感染某种慢性病之前患这种疾病的风险。因此,在“预测+预防”这个表达中有“预测”这个词。P+P范式的实现将包括:(1)通过使用电子病历数据预测人们患慢性病的可能性来识别高风险患者,然后(2)将高风险患者名单转移给第三方,例如远程医疗提供者或人力资源公司,然后这些第三方将通过电子邮件,电话,社交媒体,面对面或任何其他合适的方法与这些患者联系,并与他们一起改善他们的生活方式,使他们远离慢性病的发作。在本提案中,研究将主要集中在P+P范式的预测方面和预防的有限方面。更具体地说,拟议的研究项目将涉及以下5个项目,在前三个项目中使用人工智能方法和数据分析(例如,决策树、带和不带内存的马尔可夫链、贝叶斯网络、混合模型、EM算法、核和支持向量机、蒙特卡罗模拟、无监督学习等),在后两个项目中使用工业工程方法(决策理论、工程经济学):1-预测项目1-单一慢性疾病病例2-预测项目2-慢性疾病的晚期和并发症3-预测项目3-多重合并症患者4-决策科学项目DS -评估医生及其工作人员收集的生物标志物信息的价值。本研究将涉及高素质人才(HQP),即3名博士生、3名硕士生和1名实验室技术员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guergachi, Aziz其他文献
A Hybrid Approach for Modeling Type 2 Diabetes Mellitus Progression
- DOI:
10.3389/fgene.2019.01076 - 发表时间:
2020-01-07 - 期刊:
- 影响因子:3.7
- 作者:
Perveen, Sajida;Shahbaz, Muhammad;Guergachi, Aziz - 通讯作者:
Guergachi, Aziz
Applications of association rule mining in health informatics: a survey
- DOI:
10.1007/s10462-016-9483-9 - 发表时间:
2017-03-01 - 期刊:
- 影响因子:12
- 作者:
Altaf, Wasif;Shahbaz, Muhammad;Guergachi, Aziz - 通讯作者:
Guergachi, Aziz
Patient-specific seizure detection in long-term EEG using wavelet decomposition
- DOI:
10.1016/j.bspc.2018.07.006 - 发表时间:
2018-09-01 - 期刊:
- 影响因子:5.1
- 作者:
Kaleem, Muhammad;Guergachi, Aziz;Krishnan, Sridhar - 通讯作者:
Krishnan, Sridhar
Prognostic Modeling and Prevention of Diabetes Using Machine Learning Technique
- DOI:
10.1038/s41598-019-49563-6 - 发表时间:
2019-09-24 - 期刊:
- 影响因子:4.6
- 作者:
Perveen, Sajida;Shahbaz, Muhammad;Guergachi, Aziz - 通讯作者:
Guergachi, Aziz
Hierarchical decomposition based on a variation of empirical mode decomposition
- DOI:
10.1007/s11760-016-1024-0 - 发表时间:
2017-07-01 - 期刊:
- 影响因子:2.3
- 作者:
Kaleem, Muhammad;Guergachi, Aziz;Krishnan, Sridhar - 通讯作者:
Krishnan, Sridhar
Guergachi, Aziz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guergachi, Aziz', 18)}}的其他基金
explainable AI, Data Analytics and Industrial Engineering Methods for Primary Care
用于初级保健的可解释的人工智能、数据分析和工业工程方法
- 批准号:
RGPIN-2019-05522 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
explainable AI, Data Analytics and Industrial Engineering Methods for Primary Care
用于初级保健的可解释的人工智能、数据分析和工业工程方法
- 批准号:
RGPIN-2019-05522 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
explainable AI, Data Analytics and Industrial Engineering Methods for Primary Care
用于初级保健的可解释的人工智能、数据分析和工业工程方法
- 批准号:
RGPIN-2019-05522 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Application of machine learning at predicting employees health condition to facilitate timely health intervention
应用机器学习预测员工健康状况,以便及时进行健康干预
- 批准号:
531279-2018 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Engage Grants Program
Machine learning, agent-based modelling and other new paradigms for the analysis of sustainability and sustainable investing
机器学习、基于代理的建模和其他用于分析可持续性和可持续投资的新范式
- 批准号:
250239-2013 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Machine learning, agent-based modelling and other new paradigms for the analysis of sustainability and sustainable investing
机器学习、基于代理的建模和其他用于分析可持续性和可持续投资的新范式
- 批准号:
250239-2013 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Application of Machine Learning Methods for the Analysis of Tele-health Data and Processes
应用机器学习方法分析远程医疗数据和流程
- 批准号:
521977-2017 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Engage Grants Program
Development of inventory management modules for healthcare service providers using machine learning tools
使用机器学习工具为医疗保健服务提供商开发库存管理模块
- 批准号:
506857-2016 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Engage Grants Program
Machine learning, agent-based modelling and other new paradigms for the analysis of sustainability and sustainable investing
机器学习、基于代理的建模和其他用于分析可持续性和可持续投资的新范式
- 批准号:
250239-2013 - 财政年份:2015
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Machine learning, agent-based modelling and other new paradigms for the analysis of sustainability and sustainable investing
机器学习、基于代理的建模和其他用于分析可持续性和可持续投资的新范式
- 批准号:
250239-2013 - 财政年份:2014
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于大样本乳腺结节超声影像数据的人工智能辅助诊断系统研究
- 批准号:JCZRLH202500647
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
区块链与人工智能驱动的大数据隐私保护技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
成渝交通一体化背景下的高速公路智慧管控系统:大数据驱动、AI预警与数智决策
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
数智治理背景下超大城市电梯安全治理体系构建
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AIGC笔迹鉴定的技术与管理研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
联邦学习驱动下成渝地区职业教育AI产教协同的跨区域数据共享机制与培养方案优化要素机理研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于人工智能的代谢性疾病监控与诊疗平台研发
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI代理对消费决策影响的认知神经机制研究:“人-行为-大脑”多模态数据与模型
- 批准号:QN25G020009
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于人工智能算法构建HIV/HBV合并感染预后模型
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于深度学习多中心多模态异质数据融合的早期结直肠癌(pT1)淋巴结转移人工智能辅助诊断模型的开发及临床运用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
- 批准号:
2346707 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
An innovative platform using ML/AI to analyse farm data and deliver insights to improve farm performance, increasing farm profitability by 5-10%
An%20innovative%20platform%20using%20ML/AI%20to%20analysis%20farm%20data%20and%20deliver%20insights%20to%20improv%20farm%20performance,%20increasing%20farm%20profitability%20by%205-10%
- 批准号:
10093235 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Collaborative R&D
EcoTraceAI: A Novel AI-based Platform for data collection and validation for measuring the environmental impacts of the supply chain in the fashion industry.
EcoTraceAI:一个基于人工智能的新型平台,用于数据收集和验证,用于衡量时尚行业供应链的环境影响。
- 批准号:
10114149 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
SME Support
メタボに固執した特定健診からの脱却:real world dataを用いたAIによる評価法の創出
摆脱专注于代谢综合征的特定健康检查:使用真实世界数据创建基于人工智能的评估方法
- 批准号:
24K13502 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
"Ethical Review to Support Responsible AI in Policing - A Preliminary Study of West Midlands Police's Specialist Data Ethics Review Committee "
“支持警务中负责任的人工智能的道德审查——西米德兰兹郡警察专家数据道德审查委员会的初步研究”
- 批准号:
AH/Z505626/1 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Research Grant
GOAL project: AI-supported self-directed learning lifestyle in data-rich educational ecosystem
GOAL 项目:数据丰富的教育生态系统中人工智能支持的自主学习生活方式
- 批准号:
23K25156 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: A Platform for Per-Packet AI using Heterogeneous Data Planes
职业:使用异构数据平面的每数据包人工智能平台
- 批准号:
2338034 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Continuing Grant
National Edge AI Hub for Real Data: Edge Intelligence for Cyber-disturbances and Data Quality
用于真实数据的国家边缘人工智能中心:针对网络干扰和数据质量的边缘智能
- 批准号:
EP/Y028813/1 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Research Grant
An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
- 批准号:
10100493 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Collaborative R&D
SBIR Phase I: Methods for Embedding User Data into 3D Generative AI Computer-aided-Design Models
SBIR 第一阶段:将用户数据嵌入 3D 生成式 AI 计算机辅助设计模型的方法
- 批准号:
2335491 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant