DEEL DEpendable & Explainable Learning
DEEL 值得信赖
基本信息
- 批准号:537462-2018
- 负责人:
- 金额:$ 51.63万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The application of machine learning (ML) to the complex problems of the aerospace industry, which has high standards of performance and security, needs to make the techniques robust, comprehensible, guaranteeing privacy and thus certifiable by the authorities. The DEEL project, as a result of an international collaboration between ITS Saint Exupéry in France, IVADO and CRIAQ in Canada, aims to take a first step towards the use of machine learning techniques for various problems of the Canadian aerospace industry through a multidisciplinary collaboration between several industry players and several Canadian universities with more than a dozen researchers and more than twenty graduate students and highly qualified professionals annually.The first theme deals with robustness and consists of developing ML methods that remain effective even in extreme situations not observed during design. To do this work, we rely on methods for measuring decision uncertainty, managing context changes, and methods that are robust to attack. The second theme deals with interpretability and involves developing methods that provide explanations to experts (designer, crew) to make the decisions or advice of the system understandable. The methods used in this theme are based on the notion of transparency of the learned model and on the notion of explicability of a given decision.The third theme deals with privacy by design and involves developing methods that ensure that the data used to design the ML model remains confidential and cannot be rebuilt from the results or operation of the system. The methods used in this theme are based on the controlled addition of noise in data and learning on encrypted data.These three themes aim to provide techniques to improve trust in the results of ML systems and to enable certifiability. The objective of this fourth theme is to develop ML certifiability techniques. We propose using methods and best practices of software engineering, such as tests and formal methods, to discover how to adapt them to ML.
机器学习(ML)应用于性能和安全标准很高的航空航天工业的复杂问题,需要使技术健壮、可理解、保证隐私,从而获得当局的认证。Deel项目是法国的Saint Exupéry、IVADO和加拿大的CRIAQ之间的国际合作的结果,旨在通过几个行业参与者和几所加拿大大学之间的多学科合作,向使用机器学习技术解决加拿大航空工业的各种问题迈出第一步。几所加拿大大学每年都有十几名研究人员和二十多名研究生和高素质的专业人员。第一个主题涉及健壮性,包括开发即使在设计过程中没有观察到的极端情况下仍然有效的ML方法。为了完成这项工作,我们依赖于测量决策不确定性的方法、管理上下文变化的方法以及对攻击具有健壮性的方法。第二个主题涉及可解释性,并涉及开发向专家(设计者、工作人员)提供解释的方法,以使系统的决策或建议易于理解。本主题中使用的方法基于学习模型的透明度和给定决策的可解释性的概念。第三主题通过设计来处理隐私,并涉及开发方法,以确保用于设计ML模型的数据保持机密性,并且不能从系统的结果或操作中重建。本主题中使用的方法是基于数据中噪声的受控添加和对加密数据的学习。这三个主题旨在提供提高对ML系统结果的可信性和实现可认证性的技术。第四个主题的目标是开发ML可认证性技术。我们建议使用软件工程的方法和最佳实践,如测试和形式化方法,来发现如何使它们适应ML。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marchand, MarioM其他文献
Marchand, MarioM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marchand, MarioM', 18)}}的其他基金
Machine learning for the insurance industry: predictive models, fraud detection, and fairness
保险行业的机器学习:预测模型、欺诈检测和公平性
- 批准号:
529584-2018 - 财政年份:2022
- 资助金额:
$ 51.63万 - 项目类别:
Collaborative Research and Development Grants
相似海外基金
Intelligent Dependable Environment Control For Sustainable Aquaculture
可持续水产养殖的智能可靠环境控制
- 批准号:
EP/Y000773/1 - 财政年份:2024
- 资助金额:
$ 51.63万 - 项目类别:
Research Grant
Development of model checking technology for dependable distributed systems
可靠分布式系统模型检测技术的开发
- 批准号:
23H03370 - 财政年份:2023
- 资助金额:
$ 51.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Dependable and Secure Machine Learning Acceleration from Untrusted Hardware
职业:来自不受信任的硬件的可靠且安全的机器学习加速
- 批准号:
2238873 - 财政年份:2023
- 资助金额:
$ 51.63万 - 项目类别:
Continuing Grant
CAREER: Dependable and Secure Machine Learning Acceleration from Untrusted Hardware
职业:来自不受信任的硬件的可靠且安全的机器学习加速
- 批准号:
2349538 - 财政年份:2023
- 资助金额:
$ 51.63万 - 项目类别:
Continuing Grant
Fault-Tolerant Energy Management for Highly Dependable Real-Time Embedded Systems
高度可靠的实时嵌入式系统的容错能源管理
- 批准号:
2302651 - 财政年份:2023
- 资助金额:
$ 51.63万 - 项目类别:
Standard Grant
High Dependable IoT System Platform by Verifying Synchronization of Distributed IoT Environment Supporting DX
通过验证支持 DX 的分布式物联网环境的同步性,构建高可靠的物联网系统平台
- 批准号:
23H03388 - 财政年份:2023
- 资助金额:
$ 51.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Power of Dependable Souls (PODS): A group-based, leisure-based community participation intervention for adults with serious mental illnesses
可靠灵魂的力量 (PODS):针对患有严重精神疾病的成年人的基于团体、休闲的社区参与干预措施
- 批准号:
22K17564 - 财政年份:2022
- 资助金额:
$ 51.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Dependable Predictive Inference with Uncertainty-Aware Machine Learning
通过不确定性感知机器学习进行可靠的预测推理
- 批准号:
2210637 - 财政年份:2022
- 资助金额:
$ 51.63万 - 项目类别:
Continuing Grant
DIADEM: debugging made dependable and measurable
DIADEM:调试变得可靠且可衡量
- 批准号:
EP/W012308/1 - 财政年份:2022
- 资助金额:
$ 51.63万 - 项目类别:
Research Grant