Data-driven optimization of hub locations for smart mobility
数据驱动的智能移动枢纽位置优化
基本信息
- 批准号:RGPIN-2022-03523
- 负责人:
- 金额:$ 3.13万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Smart mobility refers to using cleaner, safer, fuel- and time-efficient modes of transportation that can lead to improvements in ridership habits, transit network efficiency, fuel economy, and reduce congestion and emissions. Smart mobility plays a big role in Canada's long-term ambition to drastically reduce greenhouse gas emissions and achieve a safe, secure, green, innovative, and integrated transportation system. Current and emerging smart mobility practices include ridesharing, electric scooter (e-scooter) sharing, and truck platooning. For all these applications, hub locations, and therefore the overall network design, is crucial for operational and infrastructure efficiency and accessibility. The overarching goal of the proposed research program is to provide efficient and sustainable designs for smart mobility networks by optimizing hub locations and to develop the analytical tools and methods for data-driven decision support in hub network design. Short-term objectives focus on the optimization of hub locations for three different smart mobility applications: ridesharing, e-scooter sharing, and truck platooning. For each application, the corresponding optimization problems will be identified through analyzing real-life data and mathematical models will be developed based on information derived from those data. Decomposition methodologies will be implemented to develop efficient solution algorithms for these challenging combinatorial optimization problems. In addition to the deterministic variants, the hub location problems explored within this research program will also be modelled and solved under uncertainty, using stochastic and robust optimization techniques, to develop resilient hub networks. The developed models and algorithms will be tested and verified through key performance indicators on real-life datasets, including New York City taxi, Toronto, and Montreal bike-sharing data. The results from this research program will provide insights into the efficient design of smart mobility networks and will have an impact on the future of transportation. The developed models and algorithms will be shared through conferences and publications in respectable journals. Students trained in this program will graduate with sought-after skills in data science and optimization to work in both academia and the supply chain and logistics industry.
智能移动是指使用更清洁,更安全,更节省燃料和时间的交通方式,可以改善乘客习惯,提高交通网络效率,节省燃料,减少拥堵和排放。智能交通在加拿大大幅减少温室气体排放和实现安全、可靠、绿色、创新和综合交通系统的长期目标中发挥着重要作用。当前和新兴的智能移动实践包括拼车、电动滑板车(e-scooter)共享和卡车排队。对于所有这些应用程序,枢纽位置以及整体网络设计对于运营和基础设施的效率和可访问性至关重要。 拟议研究计划的总体目标是通过优化枢纽位置为智能移动网络提供高效和可持续的设计,并开发分析工具和方法,用于枢纽网络设计中的数据驱动决策支持。短期目标集中在三种不同的智能移动应用的枢纽位置优化:拼车,电动滑板车共享和卡车排队。对于每个应用程序,将通过分析实际数据来确定相应的优化问题,并根据从这些数据中获得的信息开发数学模型。分解方法将实施开发这些具有挑战性的组合优化问题的有效解决方案的算法。除了确定性变量,本研究计划中探索的枢纽位置问题也将在不确定性下建模和求解,使用随机和鲁棒的优化技术,以开发弹性枢纽网络。开发的模型和算法将通过真实数据集的关键性能指标进行测试和验证,包括纽约市出租车,多伦多和蒙特利尔自行车共享数据。该研究项目的结果将为智能移动网络的有效设计提供见解,并将对未来的交通运输产生影响。开发的模型和算法将通过会议和在受人尊敬的期刊上发表文章进行分享。在该计划中接受培训的学生将毕业于数据科学和优化方面的抢手技能,以便在学术界以及供应链和物流行业工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AlumurAlev, Sibel其他文献
AlumurAlev, Sibel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AlumurAlev, Sibel', 18)}}的其他基金
Hub Location and Hub Network Design
枢纽选址及枢纽网络设计
- 批准号:
RGPIN-2015-05548 - 财政年份:2021
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Hub Location and Hub Network Design
枢纽选址及枢纽网络设计
- 批准号:
RGPIN-2015-05548 - 财政年份:2020
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Hub Location and Hub Network Design
枢纽选址及枢纽网络设计
- 批准号:
RGPIN-2015-05548 - 财政年份:2019
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Hub Location and Hub Network Design
枢纽选址及枢纽网络设计
- 批准号:
RGPIN-2015-05548 - 财政年份:2018
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Hub Location and Hub Network Design
枢纽选址及枢纽网络设计
- 批准号:
RGPIN-2015-05548 - 财政年份:2017
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Hub Location and Hub Network Design
枢纽选址及枢纽网络设计
- 批准号:
RGPIN-2015-05548 - 财政年份:2016
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Hub Location and Hub Network Design
枢纽选址及枢纽网络设计
- 批准号:
RGPIN-2015-05548 - 财政年份:2015
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234032 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
Data-Driven Shape Optimization Problem toward Shock Wave Boundary Layer Interaction
冲击波边界层相互作用的数据驱动形状优化问题
- 批准号:
23K03659 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: SWIFT: Data Driven Learning and Optimization in Reconfigurable Intelligent Surface Enabled Industrial Wireless Network for Advanced Manufacturing
合作研究:SWIFT:先进制造可重构智能表面工业无线网络中的数据驱动学习和优化
- 批准号:
2414946 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234031 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
Data-Driven Scheduling of Orthopaedic Surgical Services: An End-to-End Framework with Machine Learning and Mathematical Optimization
数据驱动的骨科手术服务调度:具有机器学习和数学优化的端到端框架
- 批准号:
490488 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Operating Grants
CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
- 批准号:
2316675 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
Integrating waste and resource management: Data-driven optimization of urban mining logistics
整合废物和资源管理:数据驱动的城市矿业物流优化
- 批准号:
RGPIN-2019-07172 - 财政年份:2022
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
I-Corps: Data-Driven Robust Optimization Technology for Battery Storage System Management
I-Corps:数据驱动的电池存储系统管理鲁棒优化技术
- 批准号:
2222450 - 财政年份:2022
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
Data-driven optimization for DBS programming in temporal lobe epilepsy
颞叶癫痫 DBS 编程的数据驱动优化
- 批准号:
10574839 - 财政年份:2022
- 资助金额:
$ 3.13万 - 项目类别:
Smart Supply Chain Management via Data Driven Optimization
通过数据驱动优化实现智能供应链管理
- 批准号:
RGPIN-2019-07115 - 财政年份:2022
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




