Advances in Data Driven Quantitative Materials Characterisation
数据驱动的定量材料表征的进展
基本信息
- 批准号:RGPIN-2022-04762
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this programme of work, my team and I will develop new tools and approaches to understand the microstructure in advanced materials used in clean energy applications. Advances in characterisation are essential for the effective and timely development of engineering materials, and this enables us to have a direct link between the manufacture of materials and their long-term performance in high value, high risk, and societally useful applications. These tools will be developed through the solving of challenges posed by high tech industries where I have established collaborations and expertise, e.g. developing lightweight alloys for lower CO2 aerospace applications; longer lasting and safer materials for nuclear reactors; and quantifying the next generation of additive manufactured alloys and optimising manufacturing routes. To achieve this, I am going to lead my team in the development of new microstructural characterisation tools, including sparse data collection, correlative microscopy and new modes of imaging in two and three dimensions. Advances in two-dimensional characterisation will involve the development and use of direct electron detectors for STEM and SEM and diffraction pattern based microstructural imaging and characterisation. These will be supplemented through the use of correlative approaches to combine other microstructural signals, e.g. energy dispersive X-ray spectroscopy (EDX), to provide chemical and structural information and increase the contrast of each measurement point. We will further their use also via direct control of the electron beam, to enable us to sample large areas quickly and efficiently, e.g. via sampling of one point per microstructural domain, as well as using data science tools (including local clustering algorithms, such as principal component analysis) to maximise the signal to noise for very small precipitates. Recent investment at UBC, via a CFI IF project, will enable me to develop these techniques for full 3D characterisations using the high volume pFIB instrument. My new tools are well suited towards the characterisation of metals and ceramics, which have direct and clear use in our low carbon future (e.g. future light weight aerospace applications, hydrogen transport networks, more efficient manufacturing routes) and they also have potential to be applied to a wide range of other material systems. In the clean energy space, I am excited to work with partners to develop our approaches to explore solar cell materials, including perovskites, as well as geomaterials where we need to have understanding of the structure and phase transformations in future CO2 storage reservoirs and minerals found in sites where development of geothermal energy systems will be developed.
在这项工作计划中,我和我的团队将开发新的工具和方法,以了解清洁能源应用中使用的先进材料的微观结构。表征方面的进展对于工程材料的有效和及时开发至关重要,这使我们能够在材料的制造和它们在高价值、高风险和社会有用的应用中的长期性能之间建立直接的联系。这些工具将通过解决高科技行业带来的挑战来开发,我在这些行业建立了合作和专业知识,例如,开发用于较低二氧化碳航空航天应用的轻质合金;用于核反应堆的更持久和更安全的材料;以及量化下一代添加剂制造的合金和优化制造路线。为了实现这一目标,我将带领我的团队开发新的微结构表征工具,包括稀疏数据收集、相关显微镜和二维和三维成像的新模式。二维表征方面的进展将涉及用于STEM和扫描电子显微镜的直接电子探测器的开发和使用以及基于衍射图案的微结构成像和表征。将通过使用相关方法来结合其他微结构信号,例如能量色散X射线光谱学(EDX),以提供化学和结构信息,并增加每个测量点的对比度,从而补充这些信息。我们还将通过直接控制电子束来进一步使用它们,以使我们能够快速高效地对大片区域进行采样,例如通过对每个微结构域一个点进行采样,以及使用数据科学工具(包括本地聚类算法,如主成分分析)来最大化极小沉淀物的信噪比。最近在UBC的投资,通过CFI IF项目,将使我能够开发这些技术,使用大容量pFIB仪器进行全3D表征。我的新工具非常适合金属和陶瓷的表征,它们在我们的低碳未来具有直接和明确的用途(例如,未来的轻质航空航天应用、氢运输网络、更高效的制造路线),它们还有可能应用于广泛的其他材料系统。在清洁能源领域,我很高兴能与合作伙伴合作,开发我们的方法来探索太阳能电池材料,包括钙钛矿,以及岩土材料,在这些材料中,我们需要了解未来二氧化碳储存库的结构和相变,以及将开发地热系统的地点发现的矿物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Britton, Thomas其他文献
Britton, Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
- 批准号:
10113920 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
SME Support
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
- 批准号:
10091423 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Collaborative R&D
Data Driven Discovery of New Catalysts for Asymmetric Synthesis
数据驱动的不对称合成新催化剂的发现
- 批准号:
DP240100102 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Projects
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Fellowship
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
- 批准号:
2346707 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
- 批准号:
2340042 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Continuing Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
- 批准号:
2340089 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
- 批准号:
2323984 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant














{{item.name}}会员




