Nanometer-to-micrometer Length Scale Mechanical and Tribological Characterization System
纳米到微米长度尺度的机械和摩擦学表征系统
基本信息
- 批准号:RTI-2023-00432
- 负责人:
- 金额:$ 10.93万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Research Tools and Instruments
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Surface properties (wear resistance, hardness, surface deformation) are critical to the performance requirements of many components and devices, such as biomedical devices and aerospace applications. To establish a relation between nano- and microstructure and mechanical response of material surfaces, it is important to be able to characterize local structural deformations at high resolution using nanomechanical testing for a broad range of tailored surface chemistries, films or coatings. This proposal requests a robust and all-encompassing advanced nanoindentation system (Bruker TS 77 Nanoindenter) which features an in-situ Scanning Probe Microscopy (SPM) visualization system, to simultaneously perform SPM imaging of a material surface structure, while performing nano-micrometer length scale mechanical and tribological analysis. Nanoindentation has become a powerful alternative to measure elastic modulus, hardness, creep, stress relaxation, and fracture toughness at small scales, with full control over the indenter loading and unloading rates, dynamic oscillation, peak load, and other test parameters. This technique is not limited only to surface engineering technologies but can also be used to investigate the nanometer-to-micrometer length scale mechanical and tribological behaviour of materials in general, such as: analysis of different phases in multi-phases materials, fibre-matrix interfaces in composite materials and microstructural analysis of bulk materials. The TS 77 has the unique feature of using the same probe to raster the sample surface for topography imaging (SPM) as it does to conduct the nanomechanical test, which facilitates the positioning on desired testing sites. This ability to visualize the sample surface on the same length scale as the testing grant superior nanomechanical characterization results and data reliability. Thus, nanometer precision test placement accuracy can be achieved, which ensures that the test is being conducted at the exact desired location on the material. Additionally, by using the in-situ SPM imaging capabilities on the TS 77, quantitative wear volumes and wear removal rates can be measured as a function of applied contact force, sliding speed, and number of passes, which cannot be performed in a traditional nanoindenter system. Due to the scale of testing, tribological performance of individual microstructures, interfaces, and thin films can readily be measured. Currently, there are no in situ SPM imaging nanoindentation systems available in the Toronto region. We suggest the TS 77 will be of significant value for the research, design, and optimization of engineered materials, within the academic research and industrial communities.
表面特性(耐磨性,硬度,表面变形)对于许多组件和设备(例如生物医学设备和航空航天应用)的性能要求至关重要。为了建立纳米和微观结构之间的关系以及材料表面的机械响应,重要的是要使用纳米力学测试来表征高分辨率的局部结构变形,以在广泛的量身定制的表面化学,膜或涂料中进行纳米力学测试。该提案要求具有强大而全面的高级纳米识别系统(Bruker TS 77纳米insoindenter),该系统具有原位扫描探针显微镜(SPM)可视化系统,以同时对材料表面结构进行SPM成像,同时执行Nano-Microser长度长度尺度的机械尺度机械分析。纳米引导已成为测量弹性模量,硬度,蠕变,压力放松和骨折韧性的强大替代方法,并对凹痕负载和卸载速率,动态振荡,峰值负载和其他测试参数充分控制。该技术不仅限于表面工程技术,还可以用于研究材料的纳米至微观计尺度的机械和摩擦学行为,例如:在多块材料中对不同阶段的分析,复合材料中的纤维 - 矩阵接口中的不同阶段,复合材料和散装材料的微观结构分析。 TS 77具有使用相同的探针将样品表面进行地形成像(SPM)的独特特征,与进行纳米力学测试一样,这有助于在所需的测试位点上定位。这种能力可以与测试授予授予优越的纳米力学表征和数据可靠性相同的长度尺度可视化样品表面。因此,可以实现纳米精度测试的精度,从而确保在材料上确切的所需位置进行测试。此外,通过在TS 77上使用原位SPM成像功能,可以根据应用的纳米式系统中无法执行的施加接触力,滑动速度和通行数来测量定量磨损量和磨损率。由于测试的规模,可以很容易地测量单个微观结构,界面和薄膜的摩擦学性能。当前,多伦多地区尚无原位SPM成像纳米引导系统。我们建议TS 77在学术研究和工业社区内的研究,设计和优化的研究,设计和优化具有重要价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Azhari, Faezeh其他文献
A 3D percolation model for conductive fibrous composites: application in cement-based sensors
- DOI:
10.1007/s10853-015-9129-3 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:4.5
- 作者:
Azhari, Faezeh;Banthia, Nemkumar - 通讯作者:
Banthia, Nemkumar
Recent Advances in Skin-Inspired Sensors Enabled by Nanotechnology
- DOI:
10.1007/s11837-012-0358-5 - 发表时间:
2012-07-01 - 期刊:
- 影响因子:2.6
- 作者:
Loh, Kenneth J.;Azhari, Faezeh - 通讯作者:
Azhari, Faezeh
Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing
- DOI:
10.1016/j.cemconcomp.2012.04.007 - 发表时间:
2012-08-01 - 期刊:
- 影响因子:10.5
- 作者:
Azhari, Faezeh;Banthia, Nemkumar - 通讯作者:
Banthia, Nemkumar
Azhari, Faezeh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Azhari, Faezeh', 18)}}的其他基金
Self-sensing cementitious composites for infrastructure health monitoring
用于基础设施健康监测的自感知水泥基复合材料
- 批准号:
RGPIN-2017-06406 - 财政年份:2022
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Self-sensing cementitious composites for infrastructure health monitoring
用于基础设施健康监测的自感知水泥基复合材料
- 批准号:
RGPIN-2017-06406 - 财政年份:2021
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Self-sensing cementitious composites for infrastructure health monitoring
用于基础设施健康监测的自感知水泥基复合材料
- 批准号:
RGPIN-2017-06406 - 财政年份:2020
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Self-sensing cementitious composites for infrastructure health monitoring
用于基础设施健康监测的自感知水泥基复合材料
- 批准号:
RGPIN-2017-06406 - 财政年份:2019
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Self-sensing cementitious composites for infrastructure health monitoring
用于基础设施健康监测的自感知水泥基复合材料
- 批准号:
RGPIN-2017-06406 - 财政年份:2018
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Self-sensing cementitious composites for infrastructure health monitoring
用于基础设施健康监测的自感知水泥基复合材料
- 批准号:
RGPIN-2017-06406 - 财政年份:2017
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Bio-Inspired and Self-Sensing Nanocomposites for Monitoring Reusable Spacecraft
用于监测可重复使用航天器的仿生和自感知纳米复合材料
- 批准号:
421600-2012 - 财政年份:2014
- 资助金额:
$ 10.93万 - 项目类别:
Postgraduate Scholarships - Doctoral
Bio-Inspired and Self-Sensing Nanocomposites for Monitoring Reusable Spacecraft
用于监测可重复使用航天器的仿生和自感知纳米复合材料
- 批准号:
421600-2012 - 财政年份:2013
- 资助金额:
$ 10.93万 - 项目类别:
Postgraduate Scholarships - Doctoral
Bio-Inspired and Self-Sensing Nanocomposites for Monitoring Reusable Spacecraft
用于监测可重复使用航天器的仿生和自感知纳米复合材料
- 批准号:
421600-2012 - 财政年份:2012
- 资助金额:
$ 10.93万 - 项目类别:
Postgraduate Scholarships - Doctoral
相似海外基金
Massively Parallel Optoacoustic Retinal Stimulation at Micrometer-Resolution
微米分辨率的大规模并行光声视网膜刺激
- 批准号:
10731795 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Toward sub-micrometer neutron transmission imaging with novel 8-terminal kinetic inductance detector
利用新型 8 端动感电感探测器实现亚微米中子透射成像
- 批准号:
23K13690 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Linking optical characteristics of small particles (50 - 500 micrometer) with their sinking velocities in the mesopelagic environment
将小颗粒(50 - 500 微米)的光学特性与其在中层环境中的下沉速度联系起来
- 批准号:
2128438 - 财政年份:2022
- 资助金额:
$ 10.93万 - 项目类别:
Standard Grant
Development of a particle simulator for realistic clayey particles considering mechanical and electro-chemical forces - demystify microscopic mechanisms inside the 'house of cards' at micrometer scale
考虑机械力和电化学力的真实粘土粒子的粒子模拟器的开发 - 揭开微米尺度“纸牌屋”内部微观机制的神秘面纱
- 批准号:
21K04265 - 财政年份:2021
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Micrometer-sized photodetectors for selective-area transferring and integration on a heterogeneous substrate
微米级光电探测器,用于异质基板上的选择性区域转移和集成
- 批准号:
531859-2018 - 财政年份:2021
- 资助金额:
$ 10.93万 - 项目类别:
Collaborative Research and Development Grants