Physical, Mathematical, and Machine Learning Modeling of Iron and Steel Processes

钢铁工艺的物理、数学和机器学习建模

基本信息

  • 批准号:
    RGPIN-2021-02615
  • 负责人:
  • 金额:
    $ 3.35万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The mining and metals industry is facing major challenges and the iron and steel industry is no exception. All iron and steel makers are aiming for energy efficient and environmentally friendly operations and at the same time improving and optimizing the associated metallurgical processes to meet the stringent product quality demands at reduced cost. Having all these constraints in mind, iron and steel companies have heavily invested in research and development and one of the major areas has been physical and mathematical modeling of steelmaking and casting processes. However, the iron and steel makers have access to huge amount of process data which have been stored for a long time, and now it is essential to include data driven modeling and machine learning in solving process related problems. Today, the rapid development of modern industry and industry 4.0 is accelerating the discovery of  next-generation hybrid models which combine both fundamental and data driven concepts, and the building of digital twins of each unit operation. Hence, developing digital twins for iron and steelmaking processes is critical to strengthening Canada's competitive position in today's metals industry. Having expertise in process metallurgy, physical and mathematical modeling, and machine learning, the applicant's group at the University of Toronto aims to use quantitative experimental techniques in physical models and generate controlled process data to develop preliminary digital twins of iron and steel processes, and integrate them with industrial data to develop real digital twins of unit operations. With this long-term vision, physical and digital twins for basic oxygen furnaces (BOF), Continuous Caster (CC), Ladle Metallurgy (LMF), and  a Water Atomizer (WA) for the production of metal powders, will be developed. Researchers in our group will extensively use physical and mathematical modeling to understand the complicated underlying physics behind each process, and also generate controlled experimental data. Researchers will also use machine learning based predictions of different outputs for the above mentioned processes. Some of the key questions to be answered are: (i) Where does fundamental physical and mathematical models fail to make accurate predictions? (ii) Are the data driven predictions interpretable? (iii) Are digital twins reliable? (iv) Can we develop hybrid techniques using the power of both fundamental models based on metallurgical principles and data driven models? The short term benefits will be in-depth knowledge of the underlying physics of various unit operations and the applicability of machine learning techniques for process optimization. The long-term benefits will be the development of digital twins and hybrid models which can serve as real time optimization tools and benefit the iron and steel industry immensely. Finally, all the knowledge and discovery can be  cross pollinated to other mining and metals sectors in Canada.
采矿和金属行业正面临重大挑战,钢铁行业也不例外。所有钢铁制造商都致力于节能和环保运营,同时改进和优化相关的冶金工艺,以降低成本,满足严格的产品质量要求。考虑到所有这些限制,钢铁公司在研究和开发方面投入了大量资金,其中一个主要领域是炼钢和铸造过程的物理和数学建模。然而,钢铁制造商可以访问大量的过程数据,这些数据已经存储了很长一段时间,现在有必要将数据驱动建模和机器学习纳入解决过程相关问题。如今,现代工业和工业4.0的快速发展正在加速下一代混合模型的发现,这些模型联合收割机了基础和数据驱动的概念,并建立了每个单元操作的数字孪生模型。因此,为钢铁和炼钢过程开发数字孪生模型对于加强加拿大在当今金属行业的竞争地位至关重要。申请人在多伦多大学的团队拥有工艺冶金、物理和数学建模以及机器学习方面的专业知识,他们的目标是在物理模型中使用定量实验技术,并生成受控的工艺数据,以开发钢铁工艺的初步数字孪生,并将其与工业数据整合,以开发单元操作的真实的数字孪生。基于这一长期愿景,我们将开发用于氧气顶吹转炉(BOF)、连铸机(CC)、钢包冶金(LMF)和用于金属粉末生产的水雾化器(WA)的物理和数字孪生。我们团队的研究人员将广泛使用物理和数学建模来理解每个过程背后复杂的物理基础,并生成受控的实验数据。研究人员还将使用基于机器学习的不同输出预测上述过程。需要回答的一些关键问题是:(1)基本的物理和数学模型在哪些方面无法做出准确的预测?(ii)数据驱动的预测是否可解释?(iii)数字孪生子可靠吗?(iv)我们能否利用基于冶金原理的基础模型和数据驱动模型的力量开发混合技术?短期利益将是深入了解各种单元操作的基础物理学以及机器学习技术在过程优化中的适用性。长期利益将是数字孪生和混合模型的开发,这些模型可以作为真实的时间优化工具,并使钢铁行业受益匪浅。最后,所有的知识和发现都可以交叉传播到加拿大的其他采矿和金属行业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chattopadhyay, Kinnor其他文献

Bubble Characterization in a Continuous Casting Mold: Comparison and Identification of Image Processing Techniques
Physical and Mathematical Modelling of Inert Gas Shrouding in a Tundish
  • DOI:
    10.2355/isijinternational.51.573
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Chattopadhyay, Kinnor;Isac, Mihaiela;Guthrie, Roderick I. L.
  • 通讯作者:
    Guthrie, Roderick I. L.
Modeling of Liquid Steel/Slag/Argon Gas Multiphase Flow During Tundish Open Eye Formation in a Two-Strand Tundish
Multiple-metal-doped Fe3O4@Fe2O3 nanoparticles with enhanced photocatalytic performance for methyl orange degradation under UV/solar light irradiation
多种金属掺杂的 Fe3O4@Fe2O3 纳米颗粒在紫外/太阳光照射下具有增强的光催化降解甲基橙性能
  • DOI:
    10.1016/j.ceramint.2020.04.234
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Li, Nan;He, Yun-long;Chattopadhyay, Kinnor
  • 通讯作者:
    Chattopadhyay, Kinnor
Experiments and modeling of the breakup mechanisms of an attenuating liquid sheet
  • DOI:
    10.1016/j.ijmultiphaseflow.2020.103347
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Asgarian, Ali;Heinrich, Martin;Chattopadhyay, Kinnor
  • 通讯作者:
    Chattopadhyay, Kinnor

Chattopadhyay, Kinnor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chattopadhyay, Kinnor', 18)}}的其他基金

Innovative Low Melting Liquid Metal Model for Optimizing Argon Injection Practices during Steelmaking and Continuous Casting for Productivity and Quality Improvements
创新的低熔点液态金属模型,用于优化炼钢和连铸过程中的吹氩实践,以提高生产率和质量
  • 批准号:
    522412-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants
Development of a bench-scale liquid metal wiping pilot system for understanding and optimizing the jet wiping process during hot dip galvanizing
开发小型液态金属擦拭试点系统,用于了解和优化热浸镀锌过程中的喷射擦拭过程
  • 批准号:
    565310-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Alliance Grants
Continuous Caster Mould Digital Twin Development for Fluid Flow Control and Sliver Defect Minimization
用于流体流动控制和条子缺陷最小化的连铸机模具数字孪生开发
  • 批准号:
    560338-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Alliance Grants
Physical, Mathematical, and Machine Learning Modeling of Iron and Steel Processes
钢铁工艺的物理、数学和机器学习建模
  • 批准号:
    RGPIN-2021-02615
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Fluid flow modeling of a curved continuous slab casting mold
弯曲板坯连铸结晶器的流体流动建模
  • 批准号:
    530892-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants
Continuous Caster Mould Digital Twin Development for Fluid Flow Control and Sliver Defect Minimization
用于流体流动控制和条子缺陷最小化的连铸机模具数字孪生开发
  • 批准号:
    560338-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Alliance Grants
Enhancing liquid metal quality and productivity in a slab caster through physical and mathematical modelling
通过物理和数学建模提高板坯连铸机的液态金属质量和生产率
  • 批准号:
    488536-2015
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants
Fluid flow modeling of a curved continuous slab casting mold
弯曲板坯连铸结晶器的流体流动建模
  • 批准号:
    530892-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants
Innovative Low Melting Liquid Metal Model for Optimizing Argon Injection Practices during Steelmaking and Continuous Casting for Productivity and Quality Improvements
创新的低熔点液态金属模型,用于优化炼钢和连铸过程中的吹氩实践,以提高生产率和质量
  • 批准号:
    522412-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants
Fluid flow modeling of a curved continuous slab casting mold
弯曲板坯连铸结晶器的流体流动建模
  • 批准号:
    530892-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants

相似海外基金

Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
  • 批准号:
    2420029
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
  • 批准号:
    2300445
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
Data-Driven Scheduling of Orthopaedic Surgical Services: An End-to-End Framework with Machine Learning and Mathematical Optimization
数据驱动的骨科手术服务调度:具有机器学习和数学优化的端到端框架
  • 批准号:
    490488
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Operating Grants
Modelling, predicting and risk assessment of mpox (monkeypox) and other (re)emerging zoonotic threats to inform decision-making and public health actions: mathematical, geospatial and machine learning approaches
对mpox(猴痘)和其他(重新)出现的人畜共患威胁进行建模、预测和风险评估,为决策和公共卫生行动提供信息:数学、地理空间和机器学习方法
  • 批准号:
    481139
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Operating Grants
The Development of Mathematical Models using Machine Learning with Educational Big Data for Language Acquisition and Individually Optimized Learning
利用机器学习和教育大数据开发数学模型,用于语言习得和个体优化学习
  • 批准号:
    23K00651
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
  • 批准号:
    2306769
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
Integrable Probability and Universality in Mathematical Physics and Machine Learning
数学物理和机器学习中的可积概率和普适性
  • 批准号:
    RGPIN-2022-04106
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable Probability and Universality in Mathematical Physics and Machine Learning
数学物理和机器学习中的可积概率和普适性
  • 批准号:
    DGECR-2022-00450
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Launch Supplement
Constructing mathematical foundation in interdisciplinary field of optics and machine learning
构建光学与机器学习跨学科领域的数学基础
  • 批准号:
    22K19787
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Optimising microbial protein biotechnology using machine learning and mathematical optimisation for protein sustainability
使用机器学习和数学优化来优化微生物蛋白质生物技术以实现蛋白质可持续性
  • 批准号:
    2725958
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了