Novel Statistical Methods in Functional and Brain Imaging Data Analysis

功能和脑成像数据分析中的新统计方法

基本信息

  • 批准号:
    RGPIN-2018-04486
  • 负责人:
  • 金额:
    $ 5.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Functional data analysis has been an area of increasing interests in the last decades and successfully used in many fields, particularly Neuroimaging, which recently emerged as part of the rapidly evolving field of big and complex data analysis. Neuroimaging data, also known as brain imaging data, include diffusion tensor imaging (DTI), magnetic resonance imaging (MRI), and so on, which could be treated as functional data while having its own features. Therefore, its statistical analysis inherits some methods from functional data analysis and also poses new challenges due to its complex structures. To address those challenges, we develop novel statistical methods in functional and brain imaging data analysis to explore its complex and correlated structures and integrate data from other resources such as clinical data, genetics data, etc.We consider two data structures: one is to model univariate response with functional and univariate predictors, and the other one is to model functional response with univariate covariates. Traditionally, the conditional mean of the response would be modelled. However, to obtain the full picture, to deal with heterogeneity of imaging data, and to account the complex and correlated structure, we model conditional quantiles of the responses. The novelty of our new statistical methods are multifold. Theoretically, by restricting functional effects in reproducing kernel Hilbert space (RKHS), our estimates achieve the optimal minimax convergence rates. Computationally,by taking advantage of the representation theorem, we develop an efficient algorithm based on the alternating direction method of multipliers (ADMM). The classical primal-dual algorithm based on exploring the quantile residual structure could be highly effective taking account of the special functional data structure. In addition, to integrate large-scale data such as genetic data, we develop fast screening methods in ultra large-scale scenario and add penalty functions to regularize large-scale features. We choose unbiased nonconvex penalty functions such as smoothly clipped absolute deviation (SCAD) and others. Screening and selection consistency, and efficient algorithms will be derived.The novel statistical methods we proposed are timely, critical and important. They can be used in analyzing many large-scale real data sets, for example the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Human Connectome Project (HCP), and others. This will pave ways to understand human brains and offer hopes to better treat various mental disorders including autism, Alzheimer's disease, etc. The proposed statistical methods will provide excellent training opportunities to graduate students as well as undergraduate and postdoctoral researchers to gain valuable skills to prepare them for future careers. The derived algorithms will be implemented in R to be available publicly.
在过去的几十年里,功能数据分析一直是一个越来越受关注的领域,并成功地应用于许多领域,特别是神经成像,它最近成为快速发展的大数据和复杂数据分析领域的一部分。神经影像数据又称脑成像数据,包括弥散张量成像(DTI)、磁共振成像(MRI)等,既可以作为功能数据处理,又有其自身的特点。因此,它的统计分析继承了功能数据分析的一些方法,也提出了新的挑战,由于其复杂的结构。为了应对这些挑战,我们开发了新的统计方法在功能和脑成像数据分析,以探索其复杂的和相关的结构,并整合来自其他资源,如临床数据,遗传学数据等数据。我们考虑两种数据结构:一个是建模单变量响应与功能和单变量预测,另一个是建模功能响应与单变量协变量。传统上,响应的条件均值将被建模。然而,为了获得全貌,处理成像数据的异质性,并考虑复杂和相关的结构,我们对响应的条件分位数进行建模。我们新的统计方法的新奇是多方面的。理论上,通过限制再生核Hilbert空间(RKHS)中的函数效应,我们的估计达到了最优的极小极大收敛速度。在计算上,利用表示定理,我们开发了一个有效的算法的基础上交替方向的乘法器(ADMM)。经典的基于分位数残差结构的原始-对偶算法,考虑到函数数据结构的特殊性,具有很高的效率。此外,为了整合基因数据等大规模数据,我们开发了超大规模场景下的快速筛选方法,并添加了惩罚函数来正则化大规模特征。我们选择无偏的非凸罚函数,如平滑剪切绝对偏差(SCAD)等。筛选和选择的一致性,以及有效的算法,我们提出的新的统计方法是及时的,关键的和重要的。它们可以用于分析许多大规模的真实的数据集,例如阿尔茨海默病神经成像倡议(ADNI),人类连接组计划(HCP)等。这将为了解人类大脑铺平道路,并为更好地治疗各种精神障碍,包括自闭症,阿尔茨海默病等提供希望。拟议的统计方法将为研究生以及本科生和博士后研究人员提供极好的培训机会,以获得宝贵的技能,为他们未来的职业生涯做好准备。衍生算法将在R中实现,以公开提供。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kong, Linglong其他文献

Nonasymptotic support recovery for high-dimensional sparse covariance matrices
  • DOI:
    10.1002/sta4.316
  • 发表时间:
    2021-12-01
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Kashlak, Adam B.;Kong, Linglong
  • 通讯作者:
    Kong, Linglong
Nanocellulose-Reinforced Polyurethane for Waterborne Wood Coating
用于水性木器涂料的纳米纤维素增强聚氨酯
  • DOI:
    10.3390/molecules24173151
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Kong, Linglong;Xu, Dandan;Li, Yongfeng
  • 通讯作者:
    Li, Yongfeng
High-Dimensional Spatial Quantile Function-on-Scalar Regression.
QUANTILE TOMOGRAPHY: USING QUANTILES WITH MULTIVARIATE DATA
  • DOI:
    10.5705/ss.2010.224
  • 发表时间:
    2012-10-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Kong, Linglong;Mizera, Ivan
  • 通讯作者:
    Mizera, Ivan
A general framework for quantile estimation with incomplete data

Kong, Linglong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kong, Linglong', 18)}}的其他基金

Statistical Learning
统计学习
  • 批准号:
    CRC-2019-00246
  • 财政年份:
    2022
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Canada Research Chairs
Statistical Learning
统计学习
  • 批准号:
    CRC-2019-00246
  • 财政年份:
    2021
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Canada Research Chairs
Novel Statistical Methods in Functional and Brain Imaging Data Analysis
功能和脑成像数据分析中的新统计方法
  • 批准号:
    RGPIN-2018-04486
  • 财政年份:
    2021
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Statistical Methods in Functional and Brain Imaging Data Analysis
功能和脑成像数据分析中的新统计方法
  • 批准号:
    RGPIN-2018-04486
  • 财政年份:
    2020
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Learning
统计学习
  • 批准号:
    CRC-2019-00246
  • 财政年份:
    2020
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Canada Research Chairs
Novel Statistical Methods in Functional and Brain Imaging Data Analysis
功能和脑成像数据分析中的新统计方法
  • 批准号:
    RGPIN-2018-04486
  • 财政年份:
    2019
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Statistical Methods in Functional and Brain Imaging Data Analysis
功能和脑成像数据分析中的新统计方法
  • 批准号:
    RGPIN-2018-04486
  • 财政年份:
    2018
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Discovery Grants Program - Individual
Robust estimation of treatment effects in high-dimensional heterogenous data with application to e-commerce
高维异构数据处理效果的鲁棒估计及其在电子商务中的应用
  • 批准号:
    523105-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Engage Grants Program
Quantile regression in brain imaging data analysis
脑成像数据分析中的分位数回归
  • 批准号:
    436353-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Discovery Grants Program - Individual
Quantile regression in brain imaging data analysis
脑成像数据分析中的分位数回归
  • 批准号:
    436353-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Liver Fibrosis: Leveraging Novel Statistical Methods to Determine Optimal Screening Strategy for People Living with Type 2 Diabetes
肝纤维化:利用新的统计方法确定 2 型糖尿病患者的最佳筛查策略
  • 批准号:
    488421
  • 财政年份:
    2023
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Operating Grants
Novel statistical genetics methods to unravel polygenic interactions in complex traits
揭示复杂性状中多基因相互作用的新统计遗传学方法
  • 批准号:
    10713965
  • 财政年份:
    2023
  • 资助金额:
    $ 5.97万
  • 项目类别:
Novel statistical methods for data with non-Euclidean geometric structure
非欧几何结构数据的新颖统计方法
  • 批准号:
    DP220102232
  • 财政年份:
    2022
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Discovery Projects
Novel Statistical methods for extracting information from genetic data
从遗传数据中提取信息的新统计方法
  • 批准号:
    2744324
  • 财政年份:
    2022
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Studentship
Novel Statistical Methods for Oral Microbiome Data Analysis
口腔微生物组数据分析的新统计方法
  • 批准号:
    10525318
  • 财政年份:
    2022
  • 资助金额:
    $ 5.97万
  • 项目类别:
Resolving single-cell analysis challenges via data-driven decision frameworks and novel statistical methods
通过数据驱动的决策框架和新颖的统计方法解决单细胞分析挑战
  • 批准号:
    10707308
  • 财政年份:
    2022
  • 资助金额:
    $ 5.97万
  • 项目类别:
Accelerating biomarker development through novel statistical methods for analyzing phase III/IV studies
通过分析 III/IV 期研究的新统计方法加速生物标志物开发
  • 批准号:
    10568744
  • 财政年份:
    2022
  • 资助金额:
    $ 5.97万
  • 项目类别:
Novel Statistical Data Integration Methods for Multi-View Data
多视图数据的新颖统计数据集成方法
  • 批准号:
    548103-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Novel Statistical Integration Methods for Multi-View Data
多视图数据的新颖统计集成方法
  • 批准号:
    RGPIN-2022-03034
  • 财政年份:
    2022
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Statistical Methods for Development of Polygenic Scores in Multi-Ancestry Cohorts
多祖先队列中多基因评分开发的新统计方法
  • 批准号:
    10794931
  • 财政年份:
    2022
  • 资助金额:
    $ 5.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了