Robust estimation of treatment effects in high-dimensional heterogenous data with application to e-commerce
高维异构数据处理效果的鲁棒估计及其在电子商务中的应用
基本信息
- 批准号:523105-2018
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Granify is an Edmonton-based company that uses artificial intelligence, behavioral messaging and predictive**analytics to optimize e-commerce conversion rates and revenues. During a customer's visit, Granify monitors**various attributes per second such as scroll speed, products and images viewed, mouse movements, and**hesitations, to fully understand the customer's digital behavior. If Granify determines a specific customer's**objection is likely to prevent them from purchasing, it will automatically introduce a message or stimuli to**alleviate their concern and increase their chance of purchasing.To quantify how customers respond to the**message or stimuli introduced by Granify, we need to estimate the treatment effect of the Granify intervention.**A standard A/B test is usually conducted by randomly segmenting customer sessions into groups, both with and**without Granify intervention (treatment and control group, respectively).Currently, average treatment effect**(ATE), the difference of the average money spent per session between treatment group and control group, is**used to measure the effect of implementing Granify. However, ATE only provides a partial view over the**effects of the treatment since each customer might respond to the treatment in different ways. Underlying this**average effect for a sample may be substantial variation in how particular customers respond to treatments.**This variation may reveal how the effect of the Granify intervention depends on customers' characteristics, and**it is useful to provide guidance on how to optimally administer treatments. Furthermore, ATE is often sensitive**to outliers and skewness of the outcome distribution. The goal of this research is twofold: first, to test and**estimate heterogeneous treatment effects of Granify intervention; and second, to provide a robust location**estimator and corresponding confidence interval for the treatment effect.
Granify是一家位于埃德蒙顿的公司,利用人工智能、行为信息和预测分析来优化电子商务的转化率和收入。在客户访问期间,Granify每秒监测各种属性,如滚动速度、查看的产品和图像、鼠标移动和犹豫,以充分了解客户的数字行为。如果Granify确定一个特定的客户的**反对可能会阻止他们购买,它会自动引入一个消息或刺激,以减轻他们的担忧,增加他们的购买机会。为了量化客户对Granify引入的**信息或刺激的反应,我们需要估计Granify干预的治疗效果。**标准的A/B测试通常是通过随机将客户会话分成有和没有Granify干预的组(分别是实验组和对照组)来进行的。目前,平均治疗效果**(ATE),即治疗组和对照组每次平均花费的钱的差异,被**用来衡量实施Granify的效果。但是,ATE只提供了治疗效果的部分视图,因为每个客户可能以不同的方式响应治疗。在样本平均效应的基础上,可能是特定客户对治疗的反应存在实质性差异。**这种变化可能揭示Granify干预的效果如何取决于客户的特征,并且**对于如何最佳地管理治疗提供指导是有用的。此外,ATE通常对结果分布的异常值和偏度很敏感。本研究的目的有两个:第一,测试和评估Granify干预的异质性治疗效果;第二,为处理效果提供鲁棒的位置估计量和相应的置信区间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kong, Linglong其他文献
Nonasymptotic support recovery for high-dimensional sparse covariance matrices
- DOI:
10.1002/sta4.316 - 发表时间:
2021-12-01 - 期刊:
- 影响因子:1.7
- 作者:
Kashlak, Adam B.;Kong, Linglong - 通讯作者:
Kong, Linglong
Nanocellulose-Reinforced Polyurethane for Waterborne Wood Coating
用于水性木器涂料的纳米纤维素增强聚氨酯
- DOI:
10.3390/molecules24173151 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:4.6
- 作者:
Kong, Linglong;Xu, Dandan;Li, Yongfeng - 通讯作者:
Li, Yongfeng
High-Dimensional Spatial Quantile Function-on-Scalar Regression.
- DOI:
10.1080/01621459.2020.1870984 - 发表时间:
2022 - 期刊:
- 影响因子:3.7
- 作者:
Zhang, Zhengwu;Wang, Xiao;Kong, Linglong;Zhu, Hongtu - 通讯作者:
Zhu, Hongtu
QUANTILE TOMOGRAPHY: USING QUANTILES WITH MULTIVARIATE DATA
- DOI:
10.5705/ss.2010.224 - 发表时间:
2012-10-01 - 期刊:
- 影响因子:1.4
- 作者:
Kong, Linglong;Mizera, Ivan - 通讯作者:
Mizera, Ivan
A general framework for quantile estimation with incomplete data
- DOI:
10.1111/rssb.12309 - 发表时间:
2019-04-01 - 期刊:
- 影响因子:5.8
- 作者:
Han, Peisong;Kong, Linglong;Zhou, Xingcai - 通讯作者:
Zhou, Xingcai
Kong, Linglong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kong, Linglong', 18)}}的其他基金
Novel Statistical Methods in Functional and Brain Imaging Data Analysis
功能和脑成像数据分析中的新统计方法
- 批准号:
RGPIN-2018-04486 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Novel Statistical Methods in Functional and Brain Imaging Data Analysis
功能和脑成像数据分析中的新统计方法
- 批准号:
RGPIN-2018-04486 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Novel Statistical Methods in Functional and Brain Imaging Data Analysis
功能和脑成像数据分析中的新统计方法
- 批准号:
RGPIN-2018-04486 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Novel Statistical Methods in Functional and Brain Imaging Data Analysis
功能和脑成像数据分析中的新统计方法
- 批准号:
RGPIN-2018-04486 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Novel Statistical Methods in Functional and Brain Imaging Data Analysis
功能和脑成像数据分析中的新统计方法
- 批准号:
RGPIN-2018-04486 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Quantile regression in brain imaging data analysis
脑成像数据分析中的分位数回归
- 批准号:
436353-2013 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Quantile regression in brain imaging data analysis
脑成像数据分析中的分位数回归
- 批准号:
436353-2013 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
肌肉挫伤后组织中时间相关基因表达与损伤经历时间研究
- 批准号:81001347
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于计算和存储感知的运动估计算法与结构研究
- 批准号:60803013
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
多用户MIMO-OFDM系统中的同步和信道估计的研究
- 批准号:60302025
- 批准年份:2003
- 资助金额:30.0 万元
- 项目类别:联合基金项目
相似海外基金
Egalitarian Equivalent Treatment Effects: The Econometrics of Inequality-Sensitive Treatment Effects Estimation
平等主义等效治疗效果:不平等敏感治疗效果估计的计量经济学
- 批准号:
2313969 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Partitioning-Based Learning Methods for Treatment Effect Estimation and Inference
基于分区的治疗效果估计和推理学习方法
- 批准号:
2241575 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Targeting High Risk Drinking Days with Mobile Treatment for Spanish-Speaking Patients
通过针对西班牙语患者的移动治疗来瞄准高风险饮酒日
- 批准号:
10722095 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Chemotherapy-free cure of hemoglobin disorders through base editing
通过碱基编辑无需化疗即可治愈血红蛋白疾病
- 批准号:
10754114 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Modeling Neoplastic Progression in Barrett's Esophagus - Renewal -2
巴雷特食管肿瘤进展建模 - 更新 -2
- 批准号:
10594704 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
- 批准号:
10330130 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
The impact of clinical interventions for sepsis in routine care and among detailed patient subgroups: A novel approach for causal effect estimation in electronic health record data
脓毒症临床干预措施对常规护理和详细患者亚组的影响:电子健康记录数据因果效应估计的新方法
- 批准号:
10686093 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Likely responder analysis and tests of model misspecification in randomized controlled trials of treatments for Alcohol Use Disorder
酒精使用障碍治疗随机对照试验中的可能反应者分析和模型错误指定测试
- 批准号:
10705711 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:














{{item.name}}会员




