Combinatorial problems in the theory of toric varieties

环曲面簇理论中的组合问题

基本信息

  • 批准号:
    RGPIN-2020-04335
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The general area of the proposed research is the combinatorics of toric varieties. Toric varieties are some of the simplest algebraic varieties on which general theories can be tested. Since toric varieties are defined by combinatorial data, all problems in the geometry of these varieties correspond to combinatorial problems that involve simplicial complexes, fans, polytopes. The correspondence between geometry and combinatorics of toric varieties can be exploited in both directions. Geometric problems can be reduced to simpler combinatorial ones, and conversely, some hard combinatorics problems have a simple geometric proof. The current proposal looks at two such areas. The Stanley-Reisner ring theory uses algebraic geometry to study the number of simplices in a complex. The theory of Cox rings uses combinatorial methods to study the commutative algebra problem of finite generation of a Rees ring. The main result in the theory of Stanley-Reisner rings, proved 40 years ago, is that Poincare duality and the Weak Lefschetz theorem completely characterize all possible face numbers of simplicial polytopes. We propose to study the extension of this correspondence and its relatives. The main problem in the area is to prove the Weak Lefschetz theorem for general simplicial spheres and thus characterize all face numbers of such spheres. The Charney-Davis conjecture also concerns simplicial spheres, but with an added flag condition. The conjecture has important applications in geometric topology. The theory of the cd-index aims at generalizing all results from simplicial spheres to arbitrary polyhedral spheres. The goal here is to characterize the face and flag numbers of all such spheres. The minimal model program for a variety can be completely described in terms of its Cox ring. The variety is called a Mori Dream Space (MDS) if its Cox ring is finitely generated. These rings were first studied for toric varieties where they have a combinatorial description. In this proposal we are interested in the first nontrivial case, the blowup of a weighted projective plane P(a,b,c) at a point. This simple case already brings out the very complicated nature of Cox rings. The main question in the area is which of these blowups are MDS. The problem has a long history in commutative algebra where Cox rings appear under the name of Rees rings of symbolic powers. With combinatorial and toric methods we now have the ability to greatly simplify and extend previous commutative algebra results.
所提出的研究的一般领域是复曲面品种的组合学。复曲面簇是一些最简单的代数簇,一般理论可以在其上进行检验。由于复曲面簇是由组合数据定义的,因此这些簇的几何中的所有问题都对应于涉及单纯复形、扇形、多面体的组合问题。 复曲面品种的几何和组合之间的对应关系可以在两个方向上利用。几何问题可以简化为更简单的组合问题,相反,一些困难的组合问题有一个简单的几何证明。目前的建议着眼于两个这样的领域。斯坦利-莱斯纳环理论使用代数几何来研究复形中单形的数量。考克斯环理论用组合方法研究了Rees环的有限生成的交换代数问题。斯坦利-莱斯纳环理论的主要结果,证明了40年前,是庞加莱对偶和弱莱夫谢茨定理完全刻画了单纯多面体的所有可能的面数。我们建议研究这种对应关系的扩展及其亲属。该领域的主要问题是证明一般单纯球的弱Lefschetz定理,从而刻画这类球的所有面数。查尼-戴维斯猜想也涉及单纯球,但增加了一个标志条件。该猜想在几何拓扑学中有重要的应用。cd指数理论的目的是将单纯球的所有结果推广到任意多面体球。这里的目标是描述所有这些球体的面和标志编号。一个簇的最小模型程序可以完全用它的考克斯环来描述。如果这个簇的考克斯环是单生的,则称之为Mori Dream Space(MDS).这些环首先研究了环面品种,他们有一个组合的描述。在这个建议中,我们感兴趣的第一个非平凡的情况下,一个加权的射影平面P(a,B,c)在一个点的爆破。这个简单的例子已经揭示了考克斯环的非常复杂的性质。该领域的主要问题是,这些爆炸中哪些是MDS。这个问题在交换代数中有很长的历史,其中考克斯环以符号幂的里斯环的名义出现。与组合和环面的方法,我们现在有能力大大简化和扩展以前的交换代数结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karu, Kalle其他文献

Karu, Kalle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karu, Kalle', 18)}}的其他基金

Combinatorial problems in the theory of toric varieties
环曲面簇理论中的组合问题
  • 批准号:
    RGPIN-2020-04335
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial problems in the theory of toric varieties
环曲面簇理论中的组合问题
  • 批准号:
    RGPIN-2020-04335
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
  • 批准号:
    RGPIN-2015-05787
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
  • 批准号:
    RGPIN-2015-05787
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
  • 批准号:
    RGPIN-2015-05787
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
  • 批准号:
    RGPIN-2015-05787
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
  • 批准号:
    RGPIN-2015-05787
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Sheaves on fans and posets
风扇和偏心轮上的滑轮
  • 批准号:
    283301-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Sheaves on fans and posets
风扇和偏心轮上的滑轮
  • 批准号:
    380427-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Sheaves on fans and posets
风扇和偏心轮上的滑轮
  • 批准号:
    283301-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Problems in Combinatorial Geometry and Ramsey Theory
组合几何和拉姆齐理论中的问题
  • 批准号:
    2246847
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Arithmetic in group rings and study of zero-sum problems in combinatorial number theory
群环中的算术与组合数论中的零和问题研究
  • 批准号:
    RGPIN-2017-03903
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Challenge towards the open problems in the theory of lattice polytopes by algebraic and combinatorial methods
用代数和组合方法挑战晶格多胞体理论中的开放问题
  • 批准号:
    21KK0043
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Combinatorial problems in the theory of toric varieties
环曲面簇理论中的组合问题
  • 批准号:
    RGPIN-2020-04335
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic in group rings and study of zero-sum problems in combinatorial number theory
群环中的算术与组合数论中的零和问题研究
  • 批准号:
    RGPIN-2017-03903
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Difficult Combinatorial Search Problems and Graph Theory Models and Algorithms for Carbon Frameworks
Carbon框架的困难组合搜索问题以及图论模型和算法
  • 批准号:
    RGPIN-2014-05864
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial problems in the theory of toric varieties
环曲面簇理论中的组合问题
  • 批准号:
    RGPIN-2020-04335
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic in group rings and study of zero-sum problems in combinatorial number theory
群环中的算术与组合数论中的零和问题研究
  • 批准号:
    RGPIN-2017-03903
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Difficult Combinatorial Search Problems and Graph Theory Models and Algorithms for Carbon Frameworks
Carbon框架的困难组合搜索问题以及图论模型和算法
  • 批准号:
    RGPIN-2014-05864
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic in group rings and study of zero-sum problems in combinatorial number theory
群环中的算术与组合数论中的零和问题研究
  • 批准号:
    RGPIN-2017-03903
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了