Theory and Applications of Coupled Mathematical Models for Environmentally-friendly Multiscale Materials Systems
环境友好型多尺度材料系统耦合数学模型理论与应用
基本信息
- 批准号:RGPIN-2020-06958
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many current advanced technologies rely heavily on environmentally harmful components. One of such components is lead whose contents may exceed 60 weight percent in commercially available cutting-edge materials such as piezoelectrics. These materials and their composites demonstrate excellent performance in many applications where strong coupling between mechanical and electric fields is required. However, there is a strong impetus and increasingly strict environmental regulations to eliminate the environmentally harmful components without compromising the materials performance. This task is connected with a multitude of challenges, some of which require much more close attention of applied mathematicians. Building on our successful work in the development of coupled multiscale mathematical models, the proposed research program expands it to new areas, crucial for both the development of state-of-the-art mathematical theories and innovative applications. The program is aimed at further advancement in the development and applications of coupled mathematical models for the analysis of environmentally-friendly multiscale materials systems. The main goal is to account systematically for coupling and multiscale nature of the problem in this development. Application-wise, major focus will be given to several key classes of multiscale environmental-friendly materials systems such as piezoelectric composites. In the first approximation, elegantly simple mathematical concepts and formulations can be applied to some such systems, e.g., by viewing them as those consisting of two main components - a matrix, considered as a background material, and crystalline-particle-based inclusions. However, many mathematical challenges in this field still are on only scarcely explored horizons. In addressing its long-term goals, the program will, firstly, allow a systematic study of properties of such systems, accounting for nonlinear and nonlocal coupled effects, and for the polycrystalline structure of inclusions. Secondly, it will carry out mathematical and numerical analysis of the developed models with microstructures, as well as with performance-enhancing nano-additions. Thirdly, it will systematically study an important class of geometrically-tailored systems. Finally, given their ubiquitous nature, it is expected that the models and tools developed in this program will assist in addressing other challenging problems of mathematics and its applications. Indeed, the results may not be restricted to just the exemplifications given and can be useful in studying other important systems in science and engineering. The program's core includes fundamental and applied research in mathematical modelling that will lead to state-of-the-art scientific advances and will entail positive impacts on important global challenges. Training of highly qualified personnel and expanding international collaboration will be effectively integrated with the development of the program.
目前许多先进技术严重依赖于对环境有害的组件。其中一种成分是铅,在市售的尖端材料如压电材料中,铅的含量可能超过60重量%。这些材料及其复合材料在许多需要机械场和电场之间强耦合的应用中表现出优异的性能。然而,有强大的动力和越来越严格的环境法规来消除对环境有害的成分,而不影响材料的性能。这项任务是与众多的挑战,其中一些需要更多的应用数学家密切关注。基于我们在耦合多尺度数学模型开发方面的成功工作,拟议的研究计划将其扩展到新的领域,这对最先进的数学理论和创新应用的发展至关重要。该计划旨在进一步推进耦合数学模型的开发和应用,以分析环境友好的多尺度材料系统。我们的主要目标是系统地考虑耦合和多尺度性质的问题,在这个发展。在应用方面,主要关注几类关键的多尺度环境友好材料系统,如压电复合材料。在第一近似中,优雅简单的数学概念和公式可以应用于一些这样的系统,例如,通过将它们视为由两个主要成分组成的那些-被认为是背景材料的基质和基于晶体颗粒的夹杂物。然而,这一领域的许多数学挑战仍然只是很少探索的视野。在解决其长期目标,该计划将,首先,允许这样的系统的性能进行系统的研究,占非线性和非局部耦合效应,并为夹杂物的多晶结构。其次,它将进行数学和数值分析的开发模型与微观结构,以及与性能增强纳米添加。第三,系统地研究一类重要的几何裁剪系统。最后,鉴于其无处不在的性质,预计该计划中开发的模型和工具将有助于解决数学及其应用的其他挑战性问题。事实上,这些结果可能不仅限于给出的例子,而且在研究科学和工程中的其他重要系统时也是有用的。该计划的核心包括数学建模的基础和应用研究,这将导致最先进的科学进步,并将对重要的全球挑战产生积极影响。高素质人才的培养和扩大国际合作将有效地与该计划的发展相结合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melnik, Roderick其他文献
A dynamic hysteresis model based on Landau phenomenological theory of fatigue phenomenon in ferroelectrics
- DOI:
10.1016/j.mtcomm.2020.101479 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:3.8
- 作者:
He, Xuan;Du, Haoyuan;Melnik, Roderick - 通讯作者:
Melnik, Roderick
Higher-order nonlinear electromechanical effects in wurtzite GaN/AlN quantum dots
- DOI:
10.1088/0953-8984/22/49/495301 - 发表时间:
2010-12-15 - 期刊:
- 影响因子:2.7
- 作者:
Bahrami-Samani, Mehrdad;Patil, Sunil R.;Melnik, Roderick - 通讯作者:
Melnik, Roderick
First-principle studies of Ca-X (X=Si,Ge,Sn,Pb) intermetallic compounds
Ca-X (X=Si,Ge,Sn,Pb)金属间化合物的第一性原理研究
- DOI:
10.1016/j.jssc.2009.11.007 - 发表时间:
2010 - 期刊:
- 影响因子:3.3
- 作者:
Wen, Bin;Li, Tingju;Yao, Shan;Shi, Dongmin;Melnik, Roderick;Yang, Zhiwen - 通讯作者:
Yang, Zhiwen
Influence of Mg2+, SO42- and Na+ ions of sea water in crude oil recovery: DFT and ab initio molecular dynamics simulations
- DOI:
10.1016/j.colsurfa.2017.12.009 - 发表时间:
2018-02-20 - 期刊:
- 影响因子:5.2
- 作者:
Prabhakar, Sanjay;Melnik, Roderick - 通讯作者:
Melnik, Roderick
Mathematical and computational models of RNA nanoclusters and their applications in data-driven environments
- DOI:
10.1080/08927022.2020.1804564 - 发表时间:
2020-09-21 - 期刊:
- 影响因子:2.1
- 作者:
Badu, Shyam;Melnik, Roderick;Singh, Sundeep - 通讯作者:
Singh, Sundeep
Melnik, Roderick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melnik, Roderick', 18)}}的其他基金
Theory and Applications of Coupled Mathematical Models for Environmentally-friendly Multiscale Materials Systems
环境友好型多尺度材料系统耦合数学模型理论与应用
- 批准号:
RGPIN-2020-06958 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Theory and Applications of Coupled Mathematical Models for Environmentally-friendly Multiscale Materials Systems
环境友好型多尺度材料系统耦合数学模型理论与应用
- 批准号:
RGPIN-2020-06958 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Computing Facilities and Visualization in Mathematical Modelling for Multiscale Systems
多尺度系统数学建模中的计算设施和可视化
- 批准号:
RTI-2020-00535 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Research Tools and Instruments
Multiscale models for nanostructures with geometric phases and time-dependent coupling
具有几何相位和时间依赖性耦合的纳米结构的多尺度模型
- 批准号:
RGPIN-2015-04179 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Theory and Applications of Coupled Mathematical Models for Environmentally-friendly Multiscale Materials Systems
环境友好型多尺度材料系统耦合数学模型理论与应用
- 批准号:
RGPIN-2020-06958 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Development the coupled cluster theory for strongly correlated systems and applications for chemical reactions
发展强相关系统的耦合簇理论和化学反应的应用
- 批准号:
21K04978 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory and Applications of Coupled Mathematical Models for Environmentally-friendly Multiscale Materials Systems
环境友好型多尺度材料系统耦合数学模型理论与应用
- 批准号:
RGPIN-2020-06958 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Advances in Coupled-Cluster Theory with Molecular Applications
耦合簇理论及其分子应用的进展
- 批准号:
1664325 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Continuing Grant
Applications of AdS-CFT to strongly coupled quantum field theory
AdS-CFT 在强耦合量子场论中的应用
- 批准号:
1963109 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Studentship
CDS&E: Advances in Coupled-Cluster Theory with Molecular Applications
CDS
- 批准号:
1361031 - 财政年份:2014
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Applications of superstring theory to strongly-coupled systems
超弦理论在强耦合系统中的应用
- 批准号:
23540326 - 财政年份:2011
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advances in Coupled-Cluster Theory with Molecular Applications
耦合簇理论及其分子应用的进展
- 批准号:
1012743 - 财政年份:2010
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Advances in Coupled-Cluster Theory with Molecular Applications
耦合簇理论及其分子应用的进展
- 批准号:
0710146 - 财政年份:2007
- 资助金额:
$ 1.97万 - 项目类别:
Continuing Grant
Advances in Coupled-Cluster Theory with Molecular Applications
耦合簇理论及其分子应用的进展
- 批准号:
0242354 - 财政年份:2003
- 资助金额:
$ 1.97万 - 项目类别:
Continuing Grant