Theta functions in differential and arithmetic geometry

微分几何和算术几何中的 Theta 函数

基本信息

  • 批准号:
    RGPIN-2017-04959
  • 负责人:
  • 金额:
    $ 3.06万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

My research lies in the field of arithmetic geometry, at the interface of two mathematical subfields: number theory and geometry. Number theory is the study of integers, which are essentially discrete and rigid in nature. On the other hand, geometry deals with objects that are continuous, that can be stretched and pulled and deformed in a fluid manner. Arithmetic geometry marries these two points of view, applying tools and intuitions from the world of geometry to gain greater insight into number theoretic phenomena, and vice versa. I'm particularly interested in Shimura varieties, which are geometric objects that have fascinated mathematicians for decades, in part because they seem to carry deep information about number theory, and are an ideal proving ground for the tools and techniques of arithmetic geometry. Indeed, many of the major recent successes in number theory, including the spectacular resolution of Fermat's last theorem, can be viewed in these terms. In some cases, there is a nesting phenomenon whereby one Shimura variety contains many sub-Shimura varieties called special cycles. In recent years, evidence has emerged that special cycles possess very subtle and mysterious symmetries, which can be expressed precisely in terms of a mathematical property known as modularity, and which mirror, in a sense, the behaviour of the classical theta functions that have been studied for well over 150 years. However, despite a wealth of beautiful mathematics inspiring deep conjectures around this phenomenon, at present a complete conceptual account is quite out of reach. The research described in this proposal is aimed towards closing this gap. In particular, I hope to make significant strides on the geometric aspects of modularity questions, in part by leveraging recent joint work with Stephan Ehlen that develops certain conceptual tools in this context. At the same time, there are interesting, and interrelated, problems in the arithmetic setting that I intend to study, assisted by a team of three graduate students. This work would provide compelling evidence for the conjectural picture described above. As a whole, the outcome of the proposed research will advance the state of the art in this area, and point the way towards a systematic understanding of this fascinating circle of ideas.
我的研究领域是算术几何,在两个数学子领域的接口:数论和几何。数论是研究整数的学科,整数本质上是离散的和刚性的。另一方面,几何学处理的对象是连续的,可以以流体的方式拉伸、拉伸和变形。算术几何结合了这两种观点,应用几何世界的工具和直觉来更深入地了解数论现象,反之亦然。我对志村变种特别感兴趣,这是几十年来一直吸引数学家的几何对象,部分原因是它们似乎携带了关于数论的深层信息,并且是算术几何工具和技术的理想试验场。事实上,数论中最近的许多重大成就,包括费马最后定理的惊人解决,都可以用这些术语来看待。在某些情况下,有一个嵌套现象,其中一个志村品种包含许多子志村品种称为特殊周期。近年来,有证据表明,特殊的循环具有非常微妙和神秘的对称性,可以用一种称为模块性的数学性质精确地表达出来,在某种意义上,它反映了经典的theta函数的行为,这些函数已经被研究了150多年。然而,尽管有大量美丽的数学启发围绕这一现象的深刻见解,但目前一个完整的概念解释是遥不可及的。本提案中所述的研究旨在缩小这一差距。特别是,我希望在模块化问题的几何方面取得重大进展,部分原因是利用最近与Stephan Ehlen的联合工作,在此背景下开发某些概念工具。与此同时,我打算在一个由三名研究生组成的团队的帮助下研究一些有趣的、相互关联的算术问题。这项工作将为上述的地理状况提供令人信服的证据。总的来说,拟议研究的结果将推进这一领域的最新技术水平,并为系统地理解这一迷人的思想圈指明方向。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sankaran, Siddarth其他文献

Sankaran, Siddarth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sankaran, Siddarth', 18)}}的其他基金

Theta functions in differential and arithmetic geometry
微分几何和算术几何中的 Theta 函数
  • 批准号:
    RGPIN-2017-04959
  • 财政年份:
    2021
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Theta functions in differential and arithmetic geometry
微分几何和算术几何中的 Theta 函数
  • 批准号:
    RGPIN-2017-04959
  • 财政年份:
    2020
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Theta functions in differential and arithmetic geometry
微分几何和算术几何中的 Theta 函数
  • 批准号:
    RGPIN-2017-04959
  • 财政年份:
    2019
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Theta functions in differential and arithmetic geometry
微分几何和算术几何中的 Theta 函数
  • 批准号:
    RGPIN-2017-04959
  • 财政年份:
    2018
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Theta functions in differential and arithmetic geometry
微分几何和算术几何中的 Theta 函数
  • 批准号:
    RGPIN-2017-04959
  • 财政年份:
    2017
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic cycles on Shimura varieties.
Shimura 品种的算术循环。
  • 批准号:
    454495-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Postdoctoral Fellowships
Arithmetic cycles on Shimura varieties.
Shimura 品种的算术循环。
  • 批准号:
    454495-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Postdoctoral Fellowships
Theta correspondence and borcherds forms
Theta 对应关系和 borcherds 形式
  • 批准号:
    378814-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Theta correspondence and borcherds forms
Theta 对应关系和 borcherds 形式
  • 批准号:
    378814-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Continuring studies in mathematics
继续数学研究
  • 批准号:
    346746-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's

相似国自然基金

数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Single-cell Transcriptomic Analysis of Cell Type Plasticity in Barrel Cortex of Normal and Autism Model Mice
正常和自闭症模型小鼠桶状皮层细胞类型可塑性的单细胞转录组分析
  • 批准号:
    10750812
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
The role of PPARγ in astrocyte pathobiology after exposure to repetitive mild traumatic brain injury
PPARγ 在重复性轻度脑外伤后星形胶质细胞病理学中的作用
  • 批准号:
    10739968
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
Connections Between L-functions and String Theory via Differential Equations in Automorphic Forms
通过自守形式微分方程连接 L 函数和弦理论
  • 批准号:
    2302309
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Standard Grant
Translational Approach to Studying miRNA functions in sACC and amygdala in patients with BPD
研究 BPD 患者 sACC 和杏仁核 miRNA 功能的转化方法
  • 批准号:
    10635583
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
Algebraic study of L functions of modular forms of several variables and differential operators
多变量模形式的L函数和微分算子的代数研究
  • 批准号:
    23K03031
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterization of multivariate sigma-functions in terms of a system of partial differential equations obtained by Gauss-Manin connection
用通过高斯-马宁连接获得的偏微分方程组表征多元 sigma 函数
  • 批准号:
    23K03157
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Monitoring of disease-induced skin VOC patterns from handheld and wearable chemical sensors
通过手持式和可穿戴化学传感器监测疾病引起的皮肤 VOC 模式
  • 批准号:
    10426964
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
Biogenesis and functions of outer membrane vesicles in Bacteroidetes
拟杆菌外膜囊泡的生物发生和功能
  • 批准号:
    10553698
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
Differential expression and processing of CABS1 across tissues and fluids and its location-specific functions.
CABS1 在组织和体液中的差异表达和处理及其位置特异性功能。
  • 批准号:
    RGPIN-2020-04553
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Functions of PRDM Histone Methyltransferases during Cartilage Development in the Craniofacial Skeleton
PRDM 组蛋白甲基转移酶在颅面骨骼软骨发育过程中的功能
  • 批准号:
    10551839
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了