Developing a Model-free Data-driven Framework for Problems in Finance

为金融问题开发无模型的数据驱动框架

基本信息

  • 批准号:
    RGPIN-2020-04686
  • 负责人:
  • 金额:
    $ 1.53万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

As the main source of quantitative, predictive data and information for financial institutions, models represent a critical aspect of the decision-making process. However, improper modeling assumptions can lead to poor business decisions and significant financial losses. The Basel Committee on Banking Supervision and the Federal Reserve explicitly require banks to introduce additional safeguards against model risk. The main objective of this research is to develop a model-free framework to explore the implied stochastic process in data, so that critical financial problems can be solved on a model-free basis.    In this research, I will propose a discrete framework showing the implied stochastic process based on the real-world time series data. Our simple, efficient approach is different from other popular model-free approaches, as it uses artificial intelligence, doesn't require machine training and is insensitive to parameters or hyper parameters. It can be applied to solve a wide range of financial problems, from pricing and investment to risk management and capital allocation. The core research objectives are as follows. The first objective is to build the framework under various probability measures from the data set, and study the theoretical properties of the framework, such as time-consistency, convergence and stability. Secondly, I will study the methods for solving stochastic control problems in the framework without the restriction of stochastic models. Thus, the methods can be applied to portfolio optimization or decision-making problems in practice. Thirdly, I will explore the cross-sectional information between different data sets, such as S&P 500 index, VIX and their corresponding derivatives prices. This research will take these data sets as an example to study the lattice construction for S&P 500 index so as to simultaneously fit all these data sets. The results of this research will be a novel data-driven model-free discrete approach to explore the implied stochastic processes from real-world data.    This research program is interdisciplinary in nature and represents a challenging intersection of mathematical modelling in economics, computational methods, data science and finance. Its anticipated outcome will reveal the implied stochastic process in the data with a novel model-free framework. It will also provide a model-free solution for people working in financial mathematics, the financial services industry (banks, insurance companies, pension funds) and financial regulation for their daily practice. Meanwhile, this program provides a complex training for students in theoretical knowledge and hands-on experiences.
作为金融机构定量预测数据和信息的主要来源,模型是决策过程的一个关键方面。然而,不正确的建模假设可能会导致糟糕的业务决策和重大的财务损失。巴塞尔银行监管委员会和联邦明确要求银行针对模型风险引入额外的保障措施。本研究的主要目标是开发一个无模型框架,以探索数据中隐含的随机过程,从而可以在无模型的基础上解决关键的金融问题。 在这项研究中,我将提出一个离散的框架,显示隐含的随机过程的基础上,现实世界的时间序列数据。我们简单高效的方法与其他流行的无模型方法不同,因为它使用人工智能,不需要机器训练,对参数或超参数不敏感。它可以应用于解决广泛的金融问题,从定价和投资到风险管理和资本配置。 核心研究目标如下。第一个目标是从数据集中建立各种概率测度下的框架,并研究框架的理论性质,如时间一致性,收敛性和稳定性。其次,在不受随机模型约束的框架下研究随机控制问题的求解方法。因此,该方法可应用于实际的投资组合优化或决策问题。第三,探讨不同数据集之间的横截面信息,如标准普尔500指数,波动率指数及其相应的衍生品价格。本研究将以这些数据集为例,研究标准普尔500指数的格构,以同时拟合所有这些数据集。这项研究的结果将是一种新的数据驱动的无模型离散方法,探索隐含的随机过程,从现实世界的数据。 该研究计划是跨学科的,代表了经济学,计算方法,数据科学和金融数学建模的挑战性交叉。其预期结果将揭示隐含的随机过程中的数据与一个新的无模型的框架。它还将为从事金融数学、金融服务业(银行、保险公司、养老基金)和金融监管的人员提供无模型解决方案。同时,该计划为学生提供了理论知识和实践经验的综合培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xu, Wei其他文献

A Semi-Closed Form Solution to MIMO Relaying Optimization With Source-Destination Link
具有源-目的地链路的 MIMO 中继优化半封闭式解决方案
  • DOI:
    10.1109/lsp.2015.2510664
  • 发表时间:
    2016-02
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Shen, Hong;Xu, Wei;Zhao, Chunming
  • 通讯作者:
    Zhao, Chunming
Establishment of Minimal Clinically Important Improvement for Patient-Reported Symptoms to Define Recovery After Video-Assisted Thoracoscopic Surgery
建立患者报告症状的最小临床重要改善,以定义电视辅助胸腔镜手术后的恢复情况
  • DOI:
    10.1245/s10434-022-11629-7
  • 发表时间:
    2022-04-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Xu, Wei;Dai, Wei;Shi, Qiuling
  • 通讯作者:
    Shi, Qiuling
Dissection of 3D chromosome organization in Streptomyces coelicolor A3(2) leads to biosynthetic gene cluster overexpression.
Using Magnetic RAM to build the low power and soft error resilient L1 cache
使用 Magnetic RAM 构建低功耗和软错误恢复 L1 缓存
Chaos synchronization of the energy resource system
能源系统的混沌同步
  • DOI:
    10.1016/j.chaos.2007.08.008
  • 发表时间:
    2009-04
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Xu, Wei;Li, Ruihong;Li, Xiuchun
  • 通讯作者:
    Li, Xiuchun

Xu, Wei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xu, Wei', 18)}}的其他基金

Developing a Model-free Data-driven Framework for Problems in Finance
为金融问题开发无模型的数据驱动框架
  • 批准号:
    RGPIN-2020-04686
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Methodology Development and Implementation for Microbiome Sequencing Data: Hierarchical Modeling on Clustered Taxa Counts with Repeated Measures
微生物组测序数据的方法开发和实施:重复测量的聚类分类群计数的分层建模
  • 批准号:
    RGPIN-2017-06672
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Methodology Development and Implementation for Microbiome Sequencing Data: Hierarchical Modeling on Clustered Taxa Counts with Repeated Measures
微生物组测序数据的方法开发和实施:重复测量的聚类分类群计数的分层建模
  • 批准号:
    RGPIN-2017-06672
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Developing a Model-free Data-driven Framework for Problems in Finance
为金融问题开发无模型的数据驱动框架
  • 批准号:
    RGPIN-2020-04686
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Methodology Development and Implementation for Microbiome Sequencing Data: Hierarchical Modeling on Clustered Taxa Counts with Repeated Measures
微生物组测序数据的方法开发和实施:重复测量的聚类分类群计数的分层建模
  • 批准号:
    RGPIN-2017-06672
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Methodology Development and Implementation for Microbiome Sequencing Data: Hierarchical Modeling on Clustered Taxa Counts with Repeated Measures
微生物组测序数据的方法开发和实施:重复测量的聚类分类群计数的分层建模
  • 批准号:
    RGPIN-2017-06672
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Methodology Development and Implementation for Microbiome Sequencing Data: Hierarchical Modeling on Clustered Taxa Counts with Repeated Measures
微生物组测序数据的方法开发和实施:重复测量的聚类分类群计数的分层建模
  • 批准号:
    RGPIN-2017-06672
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
New Cocatalysts for Olefin Polymerization
新型烯烃聚合助催化剂
  • 批准号:
    201485-1997
  • 财政年份:
    1999
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Industrial Research Fellowships

相似国自然基金

基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
  • 批准号:
    81503449
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
  • 批准号:
    30873339
  • 批准年份:
    2008
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of a model of Gonococcal conjunctivitis for vaccine evaluations
开发用于疫苗评估的淋菌性结膜炎模型
  • 批准号:
    10740430
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
Evaluation of growth potential of ice-free vitrified heart valves in a pediatric porcine model.
评估小儿猪模型中无冰玻璃化心脏瓣膜的生长潜力。
  • 批准号:
    10696568
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
Validation of the Genetically Malleable Oncopig Hepatocellular carcinoma (HCC) Model for Targeted Therapeutic Development
用于靶向治疗开发的遗传可塑性 Oncopig 肝细胞癌 (HCC) 模型的验证
  • 批准号:
    10760736
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
Sieve based full likelihood approach for the Cox proportional hazards model with applications to immunotherapies trials
基于筛法的 Cox 比例风险模型的完全似然法及其在免疫治疗试验中的应用
  • 批准号:
    10577723
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
3D Engineered Model of Microscopic Colorectal Cancer Liver Metastasis for Adjuvant Chemotherapy Screens
用于辅助化疗筛选的显微结直肠癌肝转移 3D 工程模型
  • 批准号:
    10556192
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
HLA B44 motif neoepitopes in NSCLC: Evaluating their effects on the TME and adding them to established markers in a model to predict durable benefit from PD- 1 inhibition with and without chemotherapy
NSCLC 中的 HLA B44 基序新表位:评估它们对 TME 的影响,并将它们添加到模型中已建立的标记中,以预测有或没有化疗的 PD-1 抑制的持久益处
  • 批准号:
    10681851
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
Evaluation of growth potential of ice-free vitrified heart valves in a pediatric porcine model.
评估小儿猪模型中无冰玻璃化心脏瓣膜的生长潜力。
  • 批准号:
    10818132
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
Impacts of hurricanes and social buffering on biological aging in a free-ranging animal model
飓风和社会缓冲对自由放养动物模型生物衰老的影响
  • 批准号:
    10781021
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
Does microbiome composition moderate GI and CNS function in a VPA-induced mouse model of autism?
在 VPA 诱导的自闭症小鼠模型中,微生物组组成是否会调节胃肠道和中枢神经系统功能?
  • 批准号:
    10753699
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
An ensemble deep learning model for tumor bud detection and risk stratification in colorectal carcinoma.
用于结直肠癌肿瘤芽检测和风险分层的集成深度学习模型。
  • 批准号:
    10564824
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了