Methodology Development and Implementation for Microbiome Sequencing Data: Hierarchical Modeling on Clustered Taxa Counts with Repeated Measures
微生物组测序数据的方法开发和实施:重复测量的聚类分类群计数的分层建模
基本信息
- 批准号:RGPIN-2017-06672
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The technological advances in next generation sequencing have enabled researchers to unveil the wide variability in microbial communities and their relationships with different diseases. Therefore, it is becoming critical to understand both environmental and host genetic factors that impact the composition of the microbiome. However, robust and powerful methods in this area are underdeveloped due to the complexity of microbiome sequencing data, which includes: a) microbial taxa data are usually grouped into operational taxonomic units (OTUs) and these counts are often highly skewed, over-dispersed, and zero inflated, b) OTU counts within a taxonomic hierarchical cluster are often highly correlated, but this multivariate nature is usually ignored, c) the study designs often involve repeated measures taken from related family members, thus inducing temporal and familial correlations. In this proposal, I will develop powerful bioinformatics, statistical, and computational methods to overcome these challenges. Specifically, I propose to use the latent variable (LV) methodology to jointly model multiple taxa from hierarchical taxonomic clusters within a longitudinal family study framework. The LV framework represents the underlying conceptual traits of the cluster and explains the correlations among different taxa. To address the over-dispersed and zero inflated features of the taxa counts, I will apply both zero-inflated and hurdle models on the multivariate OTU outcomes.
The LV inference will be constructed based on a Bayesian framework with samplings from the posterior distribution obtained using Markov Chain Monte Carlo (MCMC) algorithms. A Bayesian model selection algorithm will be developed to choose the optimal models for a particular dataset. I will incorporate dimensionality reduction methodologies on the genetic factors so that the genetic association signals can be identified from genome-wide data. I will also explore gene-gene (GxG), and gene-environment (GxE) interactions on the microbiome data. High-efficiency computational algorithms will be developed using C++, and computational software will be implemented within a user-friendly interface which will be distributed to the microbiome research community. In addition, a standardized analytic pipeline for modeling and analysis of microbiome data will be constructed and tested by simulations. Sample size estimation and power analysis based on both theoretical deduction and empirical results will also be provided to allow design of future studies. This proposal will help standardize and optimize future research on modifiable environmental risk factors, as well as genetic factors, for microbiome sequencing studies. This research program will advance large-scale microbiome sequencing analytic technologies for Canadian and international genetics and computational biology researcher community.
下一代测序技术的进步使研究人员能够揭示微生物群落的广泛变异性及其与不同疾病的关系。因此,了解影响微生物组组成的环境和宿主遗传因素变得至关重要。然而,由于微生物组测序数据的复杂性,这一领域的可靠和强大的方法还不够发达,其中包括:a)微生物分类数据通常被分成可操作的分类单元(OTU),这些计数往往高度倾斜、过度分散和零膨胀;b)分类等级聚类内的OTU计数通常高度相关,但这种多变量性质通常被忽视;c)研究设计往往涉及从相关家庭成员那里重复采取的措施,从而导致时间和家族相关性。在这项提案中,我将开发强大的生物信息学、统计学和计算方法来克服这些挑战。具体地说,我建议使用潜在变量(LV)方法在纵向家族研究框架内联合建模来自层级分类群的多个分类群。LV框架代表了该簇的基本概念特征,并解释了不同分类群之间的相互关系。为了解决分类群计数的过度分散和零膨胀的特征,我将对多变量OTU结果应用零膨胀模型和障碍模型。
LV推断将基于贝叶斯框架,使用马尔可夫链蒙特卡罗(MCMC)算法从后验分布中获得样本。将开发一种贝叶斯模型选择算法,以选择特定数据集的最佳模型。我将在遗传因素上加入降维方法,这样就可以从全基因组数据中识别出遗传关联信号。我还将在微生物组数据上探索基因-基因(GxG)和基因-环境(GxE)的相互作用。高效的计算算法将使用C++开发,计算软件将在一个用户友好的界面内实现,该界面将分发给微生物组研究社区。此外,将建立一个标准化的分析管道,用于微生物组数据的建模和分析,并通过模拟进行测试。还将提供基于理论推导和经验结果的样本量估计和功率分析,以便设计未来的研究。这项建议将有助于标准化和优化未来对微生物组测序研究中可改变的环境风险因素以及遗传因素的研究。这项研究计划将为加拿大和国际遗传学和计算生物学研究人员社区推进大规模微生物组测序分析技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xu, Wei其他文献
Ultrasensitive Detection Using Surface Enhanced Raman Scattering from Silver Nanowire Arrays in Anodic Alumina Membranes
使用阳极氧化铝膜中银纳米线阵列的表面增强拉曼散射进行超灵敏检测
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Zhang, Junxi;Cao, Xueli;Xu, Wei;Hu, Xiaoye;Zhang, Lide - 通讯作者:
Zhang, Lide
The natural product salicin alleviates osteoarthritis progression by binding to IRE1α and inhibiting endoplasmic reticulum stress through the IRE1α-IκBα-p65 signaling pathway.
- DOI:
10.1038/s12276-022-00879-w - 发表时间:
2022-11 - 期刊:
- 影响因子:12.8
- 作者:
Zhu, Zhenglin;Gao, Shengqiang;Chen, Cheng;Xu, Wei;Xiao, Pengcheng;Chen, Zhiyu;Du, Chengcheng;Chen, Bowen;Gao, Yan;Wang, Chunli;Liao, Junyi;Huang, Wei - 通讯作者:
Huang, Wei
Kinetics of glass transition of Ce65Al20Co15 metallic glass
Ce65Al20Co15金属玻璃的玻璃化转变动力学
- DOI:
10.1016/j.matchemphys.2013.08.028 - 发表时间:
2013-11 - 期刊:
- 影响因子:4.6
- 作者:
Xu, Wei;Pan, Wenchao;Wang, Jiang;Zhou, Huaiying - 通讯作者:
Zhou, Huaiying
Regulation of Tissue LC-PUFA Contents, Delta6 Fatty Acyl Desaturase (FADS2) Gene Expression and the Methylation of the Putative FADS2 Gene Promoter by Different Dietary Fatty Acid Profiles in Japanese Seabass (Lateolabrax japonicus).
日本鲈鱼 (Lateolabrax japonicus) 不同膳食脂肪酸谱对组织 LC-PUFA 含量、Delta6 脂肪酰基去饱和酶 (FADS2) 基因表达和推定 FADS2 基因启动子甲基化的调节。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.7
- 作者:
Xu, Houguo;Dong, Xiaojing;Ai, Qinghui;Mai, Kangsen;Xu, Wei;Zhang, Yanjiao;Zuo, Rantao - 通讯作者:
Zuo, Rantao
A comparison of surface enhanced Raman scattering property between silver electrodes and periodical silver nanowire arrays
银电极与周期性银纳米线阵列表面增强拉曼散射特性的比较
- DOI:
10.1016/j.apsusc.2009.02.053 - 发表时间:
2009-04 - 期刊:
- 影响因子:6.7
- 作者:
Zhang, Lide;Xu, Wei;Hu, Xiaoye;Sun, Li;Zhang, Junxi - 通讯作者:
Zhang, Junxi
Xu, Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xu, Wei', 18)}}的其他基金
Developing a Model-free Data-driven Framework for Problems in Finance
为金融问题开发无模型的数据驱动框架
- 批准号:
RGPIN-2020-04686 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Developing a Model-free Data-driven Framework for Problems in Finance
为金融问题开发无模型的数据驱动框架
- 批准号:
RGPIN-2020-04686 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Methodology Development and Implementation for Microbiome Sequencing Data: Hierarchical Modeling on Clustered Taxa Counts with Repeated Measures
微生物组测序数据的方法开发和实施:重复测量的聚类分类群计数的分层建模
- 批准号:
RGPIN-2017-06672 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Developing a Model-free Data-driven Framework for Problems in Finance
为金融问题开发无模型的数据驱动框架
- 批准号:
RGPIN-2020-04686 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Methodology Development and Implementation for Microbiome Sequencing Data: Hierarchical Modeling on Clustered Taxa Counts with Repeated Measures
微生物组测序数据的方法开发和实施:重复测量的聚类分类群计数的分层建模
- 批准号:
RGPIN-2017-06672 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Methodology Development and Implementation for Microbiome Sequencing Data: Hierarchical Modeling on Clustered Taxa Counts with Repeated Measures
微生物组测序数据的方法开发和实施:重复测量的聚类分类群计数的分层建模
- 批准号:
RGPIN-2017-06672 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Methodology Development and Implementation for Microbiome Sequencing Data: Hierarchical Modeling on Clustered Taxa Counts with Repeated Measures
微生物组测序数据的方法开发和实施:重复测量的聚类分类群计数的分层建模
- 批准号:
RGPIN-2017-06672 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
New Cocatalysts for Olefin Polymerization
新型烯烃聚合助催化剂
- 批准号:
201485-1997 - 财政年份:1999
- 资助金额:
$ 2.04万 - 项目类别:
Industrial Research Fellowships
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Development and Implementation of Participatory Urban Design Methodology for Introducing Climate Change Mitigation and Adaptation Measures
制定和实施参与式城市设计方法,引入气候变化减缓和适应措施
- 批准号:
23H01578 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development and implementation of a standardized methodology aiming to optimize the efficacy and reproducibility of findings using non-invasive brain stimulation techniques in the context of motor training
开发和实施标准化方法,旨在优化运动训练背景下使用非侵入性脑刺激技术的结果的功效和可重复性
- 批准号:
RGPIN-2019-05026 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Development and implementation of a standardized methodology aiming to optimize the efficacy and reproducibility of findings using non-invasive brain stimulation techniques in the context of motor training
开发和实施标准化方法,旨在优化运动训练背景下使用非侵入性脑刺激技术的结果的功效和可重复性
- 批准号:
RGPIN-2019-05026 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Methodology Development and Implementation for Microbiome Sequencing Data: Hierarchical Modeling on Clustered Taxa Counts with Repeated Measures
微生物组测序数据的方法开发和实施:重复测量的聚类分类群计数的分层建模
- 批准号:
RGPIN-2017-06672 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Development and implementation of a standardized methodology aiming to optimize the efficacy and reproducibility of findings using non-invasive brain stimulation techniques in the context of motor training
开发和实施标准化方法,旨在优化运动训练背景下使用非侵入性脑刺激技术的结果的功效和可重复性
- 批准号:
RGPIN-2019-05026 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Lifetime Extension: Methodology Development And Implementation For Wind Turbine Drivetrains
使用寿命延长:风力涡轮机传动系统的方法开发和实施
- 批准号:
2300470 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Studentship
Methodology Development and Implementation for Microbiome Sequencing Data: Hierarchical Modeling on Clustered Taxa Counts with Repeated Measures
微生物组测序数据的方法开发和实施:重复测量的聚类分类群计数的分层建模
- 批准号:
RGPIN-2017-06672 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Development and implementation of a standardized methodology aiming to optimize the efficacy and reproducibility of findings using non-invasive brain stimulation techniques in the context of motor training
开发和实施标准化方法,旨在优化运动训练背景下使用非侵入性脑刺激技术的结果的功效和可重复性
- 批准号:
RGPIN-2019-05026 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Methodology Development and Implementation for Microbiome Sequencing Data: Hierarchical Modeling on Clustered Taxa Counts with Repeated Measures
微生物组测序数据的方法开发和实施:重复测量的聚类分类群计数的分层建模
- 批准号:
RGPIN-2017-06672 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Methodology development toward integration of process design of biopharmaceutical manufacturing and implementation of the decision-making tool
生物制药工艺设计与决策工具实施整合的方法学开发
- 批准号:
18J13892 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for JSPS Fellows