New models and solution approaches in continuous and discrete facility location
连续和离散设施位置的新模型和解决方案
基本信息
- 批准号:RGPIN-2020-04846
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A main objective of the proposed research is to construct and study generalized versions of some classical location problems in the literature that may extend their usefulness in practice. An example is the "distributed p-median problem", which generalizes the classical p-median and was recently proposed by myself and two co-authors in a recent paper (JORS 2019). This new model imposes a distribution rule that allows flows to be directed to new facilities that are not necessarily the closest to the demand points (as in the classical model). We have formulated various discrete and continuous versions of the problem and derived interesting structural properties. For example, it is well known that facility locations for the classical (closest facility) problem may be restricted to the nodes of a network. However we have shown that this is not true for the general problem. We are now working on a network formulation, and developing special cases where the finite dominating set of generalized median points has a manageable size, and hence is more amenable to solution. We also plan to extend the study to other problem classes such as the p-centre problem for locating emergency facilities. This work may also lead to useful applications in the design of supply chains. Another area of research will advance previous work supported by NSERC on approximate methods (heuristics) for solving global and combinatorial optimization problems with an emphasis on location models. A specific focus will be on improving our understanding of the topology (or landscape) of the solution space generated by different local search operators and different qualities of starting solutions. We intend to conduct empirical studies on some classical problems that will enable us to empirically evaluate the relative distances between local optima. This will provide insights on setting parameter values for various meta-heuristics, such as the 'shaking' parameter in variable neighborhood search (VNS). A related area I am working on with colleagues in Europe involves a "less is more" philosophy, which strives for simple designs instead of the current trend in the literature of increasing complexity of heuristics. Another interesting phenomenon relates to the convergence rate of local search methods. Preliminary results we have show that slowing the rate can lead to better quality solutions by altering the path traveled in the solution space. Another area of research deals with the location of hubs on a network, which has many important applications. Here I am working with another team of colleagues from Europe on applying VNS to solve some classical versions of this problem, all of which assume that the triangle inequality holds. This strong assumption results in at most two intermediary hubs along any path connecting source to destination nodes. We recently proposed a new "flow" model that eliminates this restriction, and intend to work on more efficient formulations of this type.
建议的研究的一个主要目标是构建和研究文献中的一些经典的位置问题,可能会扩大其实用性在实践中的广义版本。一个例子是“分布式p-中位数问题”,它概括了经典的p-中位数,最近由我和两位合著者在最近的一篇论文中提出(JORS 2019)。这种新的模型施加了一个分配规则,允许流量被引导到新的设施,不一定是最接近的需求点(如在经典模型)。我们已经制定了各种离散和连续版本的问题,并得出有趣的结构特性。例如,众所周知,用于经典(最近设施)问题的设施位置可以被限制到网络的节点。然而,我们已经证明,这是不正确的一般问题。我们现在正在研究一个网络公式,并开发特殊的情况下,有限的控制集的广义中值点有一个可管理的大小,因此更容易解决。我们还计划将研究扩展到其他问题类,例如定位紧急设施的p中心问题。这项工作也可能导致有用的应用程序在供应链的设计。另一个研究领域将推进NSERC支持的先前工作,即解决全局和组合优化问题的近似方法(算法),重点是位置模型。一个具体的重点将是提高我们的理解的拓扑结构(或景观)的解决方案空间产生的不同的本地搜索运营商和不同的质量开始解决方案。我们打算对一些经典问题进行实证研究,这将使我们能够经验地评估局部最优解之间的相对距离。这将为各种元启发式算法的参数值设置提供见解,例如可变邻域搜索(VNS)中的“摇动”参数。我正在与欧洲的同事合作的一个相关领域涉及到“少即是多”的哲学,该哲学追求简单的设计,而不是目前文献中日益复杂的设计。另一个有趣的现象涉及局部搜索方法的收敛速度。我们的初步结果表明,通过改变在解空间中行进的路径,减慢速度可以得到质量更好的解。另一个研究领域涉及网络上枢纽的位置,它有许多重要的应用。在这里,我与另一个来自欧洲的同事团队合作,应用VNS来解决这个问题的一些经典版本,所有这些都假设三角不等式成立。这个强假设导致沿着连接源节点到目的节点的任何路径最多有两个中间集线器沿着。我们最近提出了一个新的“流”模型,消除了这种限制,并打算工作更有效的配方这种类型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brimberg, Jack其他文献
Heuristics for Location Models
- DOI:
10.1007/978-1-4419-7572-0_15 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:0
- 作者:
Brimberg, Jack;Hodgson, John M. - 通讯作者:
Hodgson, John M.
General variable neighborhood search for the uncapacitated single allocation p-hub center problem
- DOI:
10.1007/s11590-016-1004-x - 发表时间:
2017-02-01 - 期刊:
- 影响因子:1.6
- 作者:
Brimberg, Jack;Mladenovic, Nenad;Urosevic, Dragan - 通讯作者:
Urosevic, Dragan
Solving the capacitated clustering problem with variable neighborhood search
- DOI:
10.1007/s10479-017-2601-5 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:4.8
- 作者:
Brimberg, Jack;Mladenovic, Nenad;Urosevic, Dragan - 通讯作者:
Urosevic, Dragan
Solving the maximally diverse grouping problem by skewed general variable neighborhood search
- DOI:
10.1016/j.ins.2014.10.043 - 发表时间:
2015-02-20 - 期刊:
- 影响因子:8.1
- 作者:
Brimberg, Jack;Mladenovic, Nenad;Urosevic, Dragan - 通讯作者:
Urosevic, Dragan
Variable neighborhood search for the heaviest k-subgraph
- DOI:
10.1016/j.cor.2008.12.020 - 发表时间:
2009-11-01 - 期刊:
- 影响因子:4.6
- 作者:
Brimberg, Jack;Mladenovic, Nenad;Ngai, Eric - 通讯作者:
Ngai, Eric
Brimberg, Jack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brimberg, Jack', 18)}}的其他基金
New models and solution approaches in continuous and discrete facility location
连续和离散设施位置的新模型和解决方案
- 批准号:
RGPIN-2020-04846 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
New models and solution approaches in continuous and discrete facility location
连续和离散设施位置的新模型和解决方案
- 批准号:
RGPIN-2020-04846 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Solving Location Problems by Heuristics and Exact Algorithms
通过启发式和精确算法解决定位问题
- 批准号:
RGPIN-2014-04868 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Solving Location Problems by Heuristics and Exact Algorithms
通过启发式和精确算法解决定位问题
- 批准号:
RGPIN-2014-04868 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Solving Location Problems by Heuristics and Exact Algorithms
通过启发式和精确算法解决定位问题
- 批准号:
RGPIN-2014-04868 - 财政年份:2016
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Solving Location Problems by Heuristics and Exact Algorithms
通过启发式和精确算法解决定位问题
- 批准号:
RGPIN-2014-04868 - 财政年份:2015
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Solving Location Problems by Heuristics and Exact Algorithms
通过启发式和精确算法解决定位问题
- 批准号:
RGPIN-2014-04868 - 财政年份:2014
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Solving combinatorial and global optimization problems by metaheuristics and exact algorithms
通过元启发式和精确算法解决组合和全局优化问题
- 批准号:
205041-2008 - 财政年份:2013
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Solving combinatorial and global optimization problems by metaheuristics and exact algorithms
通过元启发式和精确算法解决组合和全局优化问题
- 批准号:
205041-2008 - 财政年份:2011
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Solving combinatorial and global optimization problems by metaheuristics and exact algorithms
通过元启发式和精确算法解决组合和全局优化问题
- 批准号:
205041-2008 - 财政年份:2010
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
- 批准号:41105105
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
- 批准号:30830037
- 批准年份:2008
- 资助金额:190.0 万元
- 项目类别:重点项目
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Research on the development and solution of supply chain models for domestic production and building a sustainable society
国内生产、构建可持续社会的供应链模式开发及解决方案研究
- 批准号:
23H01638 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Network Interdiction and Fortification Planning Under Uncertainty: Models, Solution Approaches and Applications
不确定性下的网络拦截和设防规划:模型、解决方法和应用
- 批准号:
RGPIN-2017-06732 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
A Comprehensive Clinical fMRI Software Solution to Enable Mapping of Critical Functional Networks and Cerebrovascular Reactivity in the Brain
全面的临床 fMRI 软件解决方案,可绘制大脑中的关键功能网络和脑血管反应性
- 批准号:
10365573 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
A Comprehensive Clinical fMRI Software Solution to Enable Mapping of Critical Functional Networks and Cerebrovascular Reactivity in the Brain
全面的临床 fMRI 软件解决方案,可绘制大脑中的关键功能网络和脑血管反应性
- 批准号:
10595033 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Developing the thermodynamic solid solution models for Th, U, REE phosphates needed to identify the formation conditions of Th, U-depleted REE ores
开发钍、铀、稀土元素磷酸盐的热力学固溶体模型,以确定贫钍、铀元素矿石的形成条件
- 批准号:
2149848 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
- 批准号:
RGPIN-2019-06758 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
An innovative electronic preoperative assessment solution using GP data and ML/AI models that could reduce nursing time required per patient by 40%
An%20创新%20电子%20术前%20评估%20解决方案%20使用%20GP%20数据%20和%20ML/AI%20模型%20那个%20可以%20减少%20护理%20时间%20必需%20每%20患者%20by%2040%
- 批准号:
10035750 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Collaborative R&D
The Synthetic Kidney: A Revolutionary Solution for the Shortage of Kidneys for Transplantation
合成肾:解决移植肾脏短缺问题的革命性解决方案
- 批准号:
10473323 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Commercial readiness of Break Wave - The SonoMotion Office-Based Lithotripsy Solution
Break Wave 的商业准备就绪 - 基于 SonoMotion Office 的碎石解决方案
- 批准号:
10385222 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Network Interdiction and Fortification Planning Under Uncertainty: Models, Solution Approaches and Applications
不确定性下的网络拦截和设防规划:模型、解决方法和应用
- 批准号:
RGPIN-2017-06732 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual