Homotopy Algebraic Quantum Field Theory From Functorial Quantum Field Theory

来自函子量子场论的同伦代数量子场论

基本信息

  • 批准号:
    568634-2022
  • 负责人:
  • 金额:
    $ 1.53万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Postgraduate Scholarships - Doctoral
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Mathematical Physics, Quantum Field Theory, Operads, Algebraic Topology, Category Theory, Algebraic Quantum Field Theory, Functorial Quantum Field Theory, Homotopy
数学物理,量子场论,运算,代数拓扑,范畴论,代数量子场论,函子量子场论,同伦

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander, MatthewMP其他文献

Alexander, MatthewMP的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Applications of algebraic topology to quantum field theory
代数拓扑在量子场论中的应用
  • 批准号:
    2882485
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Studentship
Algebraic methods in quantum information
量子信息中的代数方法
  • 批准号:
    RGPIN-2018-03968
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic topology of quantum spin systems
量子自旋系统的代数拓扑
  • 批准号:
    22K13910
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conferences on Boolean Algebras, Lattices, Algebraic Logic and Quantum Logic, Universal Algebra, Set Theory, and Set-Theoretic and Point-free Topology
布尔代数、格、代数逻辑和量子逻辑、泛代数、集合论、集合论和无点拓扑会议
  • 批准号:
    2223126
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Continuing Grant
Algebraic and geometric structures related to classical and quantum integrable systems
与经典和量子可积系统相关的代数和几何结构
  • 批准号:
    DDG-2022-00024
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Development Grant
Algebraic graph theory and quantum walks
代数图论和量子行走
  • 批准号:
    RGPIN-2021-03609
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Homotopy Algebraic Approach to the Exact Renormalization Group Analysis in Quantum Field Theory
量子场论中精确重正化群分析的同伦代数方法
  • 批准号:
    22K14038
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Homotopy coherent structures in algebraic quantum field theory
代数量子场论中的同伦相干结构
  • 批准号:
    2742043
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Studentship
Algebraic methods in quantum information
量子信息中的代数方法
  • 批准号:
    RGPIN-2018-03968
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topological and C*-Algebraic Quantum Matter
拓扑和 C*-代数量子物质
  • 批准号:
    2055501
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了