Studying Randomness in Number Theory and Quantum Mechanics via Dynamics

通过动力学研究数论和量子力学中的随机性

基本信息

  • 批准号:
    RGPIN-2022-04330
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

My research explores the intersection of dynamics, probability theory, ergodic theory, number theory, and mathematical physics. My long-term goal is to study the extent to which classical objects from number theory and mathematical physics can be regarded as random; while the results are often of probabilistic nature, the tools I use are dynamical. Number Theory supplies us with a multitude of deterministic sequences that depend on a small number of parameters. It is of great interest to understand the degree to which these sequences exhibit random features. In other words, I aim to study whether familiar results from probability theory (or variations thereof) hold for sequences of number-theoretical origin, and explore the range of applicability of the new results. The same holds for functions arising in Quantum Mechanics, such as correlation functions. My broad aim is therefore two-fold: I plan to understand the long-time behaviour of large classes of dynamical systems to address open questions in dynamics and ergodic theory, and at the same time I intend to explore the applications of novel dynamical tools to solve problems in other disciplines, thus developing a dynamical framework to study several mathematical objects outside the realm of dynamics. The proposal includes the following projects: A) Equidistribution results in homogeneous dynamics. B) The distribution of exponential sums and processes of number-theoretical origin.  C) Bounds for theta sums. D) Autocorrelation functions in quantum mechanics. E) Berry-Tabor conjecture for nilmanifolds. F) Advances toward Chowla's and Sarnak's conjectures. G) Limit theorems for ergodic translations on compact abelian groups.
我的研究探索的交叉动力学,概率论,遍历理论,数论和数学物理。我的长期目标是研究数论和数学物理中的经典对象在多大程度上可以被视为随机的;虽然结果通常是概率性的,但我使用的工具是动态的。数论为我们提供了大量依赖于少量参数的确定性序列。了解这些序列表现出随机特征的程度是非常有趣的。换句话说,我的目标是研究概率论(或其变体)的熟悉结果是否适用于数论起源的序列,并探索新结果的适用范围。这同样适用于量子力学中出现的函数,例如相关函数。因此,我的广泛目标是双重的:我计划了解大类动力系统的长期行为,以解决动力学和遍历理论中的未决问题,同时我打算探索新的动力学工具的应用,以解决其他学科中的问题,从而开发一个动力学框架来研究动力学领域之外的几个数学对象。 该提案包括以下项目:A)均匀分布导致均匀动力学。 B)指数和的分布和数论起源的过程。C)θ和的界。量子力学中的自相关函数。E)诣零流形的Berry-Tabor猜想。F)朝Chowla和Sarnak的方向前进。G)紧交换群上遍历平移的极限定理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cellarosi, Francesco其他文献

Cellarosi, Francesco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cellarosi, Francesco', 18)}}的其他基金

Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
  • 批准号:
    RGPIN-2016-03901
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
  • 批准号:
    RGPIN-2016-03901
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
  • 批准号:
    RGPIN-2016-03901
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
  • 批准号:
    RGPIN-2016-03901
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
  • 批准号:
    RGPIN-2016-03901
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
  • 批准号:
    2404023
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Interplay between geometry and randomness in fitness landscapes for expanding populations
人口增长的健身景观中几何与随机性之间的相互作用
  • 批准号:
    EP/X040089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Research Grant
Development of self-organization model and verification of forecast accuracy of Baiu heavy rainfall systems based on the randomness of water content
基于含水量随机性的Baiu暴雨系统自组织模型建立及预报精度验证
  • 批准号:
    22KJ1845
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Robust Quantum Randomness for Industry
工业领域强大的量子随机性
  • 批准号:
    10041956
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Collaborative R&D
Randomness in High-Dimensional Combinatorics: Colorings, Robustness, and Statistics
高维组合中的随机性:着色、鲁棒性和统计
  • 批准号:
    2247078
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
AF: Small: The Power of Randomness in Decision and Verification
AF:小:决策和验证中随机性的力量
  • 批准号:
    2312540
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Structure versus Randomness in Algebraic Geometry and Additive Combinatorics
代数几何和加法组合中的结构与随机性
  • 批准号:
    2302988
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Taming the randomness of random lasers with reconfigurable active particle assemblies
利用可重构的活性粒子组件来驯服随机激光器的随机性
  • 批准号:
    2303189
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
ASCENT: TUNA: TUnable randomness for NAtural computing
ASCENT:TUNA:TU 无法实现自然计算的随机性
  • 批准号:
    2230963
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了