Commutative Algebra: Frobenius in Geometry and Combinatorics

交换代数:几何和组合学中的弗罗贝尼乌斯

基本信息

项目摘要

Polynomials are mathematical functions that describe many different kinds of behavior in mathematics, physics, and engineering. They are concrete enough to be easily manipulated by hand or computer, and easy to understand mathematically, but also flexible enough to model many different situations in nature and science. Commutative algebra and algebraic geometry are the large branches of mathematics concerned primarily with understanding polynomials and the geometric shapes they define. Their broader applications range from the computer aided design used in the automotive and entertainment industries to the error correcting codes used in many digital media. This project in commutative algebra and algebraic geometry focuses on basic research in these fields, while broadly training a diverse group of PhD and undergraduate students in commutative algebra and algebraic geometry.One specific type of algebra to be investigated are cluster algebras, which are commutative rings defined iteratively that have turned up in many branches of mathematics and physics, including the classical field of total positivity for matrices, the representation theory of lie algebras, number theory, Teichmuller theory, mirror symmetry, Poisson Geometry, discrete dynamical systems, string theory, wiring diagrams and networks, and more. The specific proposed research involves 1) developing the commutative algebra of cluster algebras, including basic notions such as localization and blowing up, as well as prime characteristic features such as test ideals; 2) reduction to prime characteristic and the iteration of the Frobenius map to understand singularities, cohomology and other features of algebraic varieties and commutative rings, studying invariants defined via Frobenius in prime characteristic, their relationship to cluster structures and their potential use in birational geometry; and 3) settling a question of Kollar on the behavior of local cohomology under base change (the main application of which is to reduce questions about maps between local Picard groups of complex varieties to characteristic p). The PI's role as a senior researcher is an integral part of the project: training the next generation of algebraists is woven into the very fabric of the research and one of the project's main objectives.
多项式是描述数学、物理和工程中许多不同类型行为的数学函数。它们足够具体,可以很容易地用手或计算机操作,并且很容易在数学上理解,但也足够灵活,可以模拟自然和科学中的许多不同情况。交换代数和代数几何是数学的大分支,主要涉及理解多项式和它们定义的几何形状。其更广泛的应用范围从汽车和娱乐行业中使用的计算机辅助设计到许多数字媒体中使用的纠错码。 交换代数和代数几何的这个项目侧重于这些领域的基础研究,同时广泛培训交换代数和代数几何的各种博士和本科生。要研究的一种特定类型的代数是簇代数,它是迭代定义的交换环,出现在数学和物理的许多分支中,包括矩阵的全正性的经典领域,李代数的表示理论,数论,Teichmuller理论,镜像对称,泊松几何,离散动力系统,弦理论,接线图和网络,等等。 具体的研究内容包括:1)发展簇代数的交换代数,包括局部化和爆破等基本概念,以及测试理想等主要特征; 2)还原到素特征和Frobenius映射的迭代,以理解代数簇和交换环的奇点,上同调和其他特征,研究由Frobenius定义的素特征不变量,它们与簇结构的关系以及它们在双有理几何中的潜在用途;解决了Kollar关于局部上同调在基变化下的行为的一个问题(其主要应用是减少问题之间的地图局部皮卡集团复杂的品种,以特点p)。PI作为高级研究员的角色是该项目不可或缺的一部分:培训下一代代数学家是该研究的基础,也是该项目的主要目标之一。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uniform Harbourne–Huneke bounds via flat extensions
统一 Harbourne–Huneke 通过平坦延伸部分进行弹跳
  • DOI:
    10.1016/j.jalgebra.2018.08.024
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Walker, Robert M.
  • 通讯作者:
    Walker, Robert M.
Local cohomology and base change
局部上同调和基数变化
  • DOI:
    10.1016/j.jalgebra.2017.09.036
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Smith, Karen E.
  • 通讯作者:
    Smith, Karen E.
Uniform approximation of Abhyankar valuation ideals in function fields of prime characteristic
质数特征函数域中 Abhyankar 估值理想的均匀逼近
Rational Singularities and Uniform Symbolic Topologies
有理奇点和统一符号拓扑
Non-commutative resolutions of toric varieties
环面簇的非交换解析
  • DOI:
    10.1016/j.aim.2019.04.021
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Faber, Eleonore;Muller, Greg;Smith, Karen E.
  • 通讯作者:
    Smith, Karen E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karen Smith其他文献

Evaluation of the Multi-Test device for immediate hypersensitivity skin testing.
用于立即过敏皮肤测试的多重测试装置的评估。
  • DOI:
    10.1016/0091-6749(92)90471-d
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robert B. Berkowitz;David G. Tinkelman;Cheryl Lutz;Angela Crummie;Karen Smith
  • 通讯作者:
    Karen Smith
Critical discourse analysis and higher education research
批判性话语分析与高等教育研究
  • DOI:
    10.1108/s1479-3628(2013)0000009007
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karen Smith
  • 通讯作者:
    Karen Smith
Factors associated with emergency medical service delays in suspected ST‐elevation myocardial infarction in Victoria, Australia: A retrospective study
澳大利亚维多利亚州疑似 ST 段抬高型心肌梗死患者紧急医疗服务延误的相关因素:一项回顾性研究
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Ahmad Alrawashdeh;Z. Nehme;B. Williams;Karen Smith;M. Stephenson;S. Bernard;P. Cameron;D. Stub
  • 通讯作者:
    D. Stub
Residential aged care homes: Why do they call ‘000’? A study of the emergency prehospital care of older people living in residential aged care homes
居家养老院:为何将其称为“000”?对居家养老院老年人的院前紧急护理的研究
  • DOI:
    10.1111/1742-6723.13650
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    R. Dwyer;B. Gabbe;T. Tran;Karen Smith;J. Lowthian
  • 通讯作者:
    J. Lowthian
Differentiation of confirmed major trauma patients and potential major trauma patients using pre-hospital trauma triage criteria.
使用院前创伤分诊标准区分已确诊的重大创伤患者和潜在的重大创伤患者。
  • DOI:
    10.1016/j.injury.2010.03.035
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    S. Cox;Karen Smith;A. Currell;L. Harriss;B. Barger;P. Cameron
  • 通讯作者:
    P. Cameron

Karen Smith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karen Smith', 18)}}的其他基金

Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
  • 批准号:
    2200501
  • 财政年份:
    2022
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Continuing Grant
Commutative Algebra: Extremal Singularities in Prime Characteristic
交换代数:素数特征中的极值奇点
  • 批准号:
    2101075
  • 财政年份:
    2021
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
  • 批准号:
    1952399
  • 财政年份:
    2020
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Continuing Grant
Commutative Algebra: F-Regularity in Algebraic Geometry and Non-Commutative Algebra
交换代数:代数几何和非交换代数中的 F 正则性
  • 批准号:
    1801697
  • 财政年份:
    2018
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Continuing Grant
Algorithm Development For Reconstruction Of Design Elements
设计元素重构的算法开发
  • 批准号:
    1658987
  • 财政年份:
    2017
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Standard Grant
The Impact of the Stratosphere on Arctic Climate
平流层对北极气候的影响
  • 批准号:
    1603350
  • 财政年份:
    2016
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Standard Grant
EMSW21-RTG: Developing American Research Leadership in Algebraic Geometry and its Boundaries
EMSW21-RTG:发展美国在代数几何及其边界方面的研究领导地位
  • 批准号:
    0943832
  • 财政年份:
    2010
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Continuing Grant
Bringing Frobenius to Bear on Birational Algebraic Geometry
将弗罗贝尼乌斯应用于双有理代数几何
  • 批准号:
    1001764
  • 财政年份:
    2010
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Continuing Grant
Commutative Algebra and its Interactions, July 31 - August 3, 2008
交换代数及其相互作用,2008年7月31日至8月3日
  • 批准号:
    0810844
  • 财政年份:
    2008
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Standard Grant
Noncommutative Geometry and Cherednik Algebras
非交换几何和切里德尼克代数
  • 批准号:
    0555750
  • 财政年份:
    2006
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Continuing Grant

相似海外基金

REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
  • 批准号:
    2349684
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Standard Grant
Studies in Categorical Algebra
分类代数研究
  • 批准号:
    2348833
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Continuing Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
  • 批准号:
    2342254
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Continuing Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
  • 批准号:
    2337178
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
  • 批准号:
    2338655
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
  • 批准号:
    2416063
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了