Learning-based Energy Management for Cyber-Physical Systems

基于学习的网络物理系统能源管理

基本信息

  • 批准号:
    RGPIN-2017-06001
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

With the advance of engineering and networking technology, many embedded devices are now connected into a network or with the Internet, and are emerging into cyber-physical systems. A cyber-physical system can be found in various applications for control and monitoring, such as automotive, aerospace, health care, transportation, building and process control, and entertainment. Unlike desktop systems, many cyber-physical systems operate with batteries that have limited energy supplies. Thus, energy efficiency is one of the inherent requirements of cyber-physical systems, as low-energy consumption yields better battery life, which is especially important for applications involving implanted medical devices. With more and more cyber-physical systems around us nowadays, low-energy consumption problem of cyber-physical systems becomes more critical. The research challenge to minimize the energy consumption of CPU or devices, while still meeting the constraints of the real-time systems, has attracted much attention in the past decade. With the variety of system configurations and task characteristics, a scheduling arrangement with Dynamic Voltage/Frequency Scaling (DVFS) and/or Dynamic Power Management (DPM) that is energy efficient for one system configuration might not be appropriate for another. Therefore, it is important to design scheduling algorithms that can be adapted to various system configurations and task characteristics.The objective of this project is to develop adaptive efficient algorithms for scheduling co-design problems for various types of cyber-physical systems subjected to various timing and resource constraints. The plan is to adopt learning-based methods that are able to learn an implicit model for voltage selection or scheduling strategy selection for the underlying cyber-physical system based on scheduling history. This method is especially useful when the task features and architecture model are unknown to (or too complex to be considered by) the DVFS scheduler. The problem of extracting good features to serve as input for an implicit model for the learning-based method, that can best represent the model of an underlying cyber-physical system, will also be explored. Currently, Q-learning, Double Q-learning and Deep Double-Q-learning will be explored. Evaluation of the framework will also be studied extensively. The framework designed will be used to explore systems with various types of tasks (dependent, independent, periodic or non-periodic, etc.), various types of scheduling policy (earliest deadline first, fixed-priority, etc.), various types of system configurations (single-core, multi-core, GPU, NOC-based, wearable type of devices, etc.).
随着工程技术和网络技术的进步,许多嵌入式设备现在已经连接到网络或与Internet相连,并正在形成网络物理系统。网络物理系统可以在各种控制和监控应用中找到,例如汽车、航空航天、医疗保健、交通、建筑和过程控制以及娱乐。与台式机系统不同,许多网络物理系统使用的电池能量供应有限。因此,能源效率是网络物理系统的内在要求之一,因为低能耗会带来更长的电池寿命,这对于涉及植入式医疗设备的应用尤其重要。随着我们身边的网络物理系统越来越多,网络物理系统的低能耗问题变得更加迫切。在过去的十年里,如何在满足实时系统的限制的同时最小化CPU或设备的能量消耗的研究挑战引起了人们的极大关注。由于系统配置和任务特性的多样性,具有动态电压/频率调整(DVFS)和/或动态电源管理(DPM)的调度安排对于一种系统配置是节能的,可能不适合于另一种系统配置。因此,设计能够适应不同系统配置和任务特点的调度算法是非常重要的。本项目的目标是针对不同时间和资源约束的各种类型的网络物理系统,开发自适应高效的调度协同设计问题的算法。该计划将采用基于学习的方法,能够学习用于基于调度历史的底层网络物理系统的电压选择或调度策略选择的隐式模型。当任务功能和体系结构模型对于DVFS调度器未知(或太复杂而无法考虑)时,此方法特别有用。还将探讨如何提取良好的特征作为基于学习的方法的隐含模型的输入,以最好地代表潜在的网络-物理系统的模型。目前,将探索Q学习、双Q学习和深度双Q学习。对该框架的评价也将得到广泛研究。所设计的框架将用于探索具有各种类型的任务(依赖、独立、周期性或非周期性等)、各种类型的调度策略(最早截止日期优先、固定优先级等)、各种类型的系统配置(单核、多核、GPU、基于NoC的设备、可穿戴设备等)的系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lin, Man其他文献

Genetic diversity, heteroplasmy, and recombination in mitochondrial genomes in Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa.
溞、黑溞和钝溞线粒体基因组的遗传多样性、异质性和重组。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    10.7
  • 作者:
    Ye, Zhiqiang;Zhao, Chaoxian;Raborn, R. Taylor;Lin, Man;Wei, Wen;Hao, Yue;Lynch, Michael;Crandall, Keith
  • 通讯作者:
    Crandall, Keith
Quercetin improves postpartum hypogalactia in milk-deficient mice via stimulating prolactin production in pituitary gland
  • DOI:
    10.1002/ptr.6079
  • 发表时间:
    2018-08-01
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Lin, Man;Wang, Na;You, Tianhui
  • 通讯作者:
    You, Tianhui
A Double Deep Q-Learning Model for Energy-Efficient Edge Scheduling
Integrating the enriched feature with machine learning algorithms for human movement and fall detection
  • DOI:
    10.1007/s11227-013-1056-y
  • 发表时间:
    2014-03-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Li, Chenghua;Lin, Man;Ding, Chen
  • 通讯作者:
    Ding, Chen
Research on the Effect of Simultaneous and Sequential Fermentation with Saccharomyces cerevisiae and Lactobacillus plantarum on Antioxidant Activity and Flavor of Apple Cider
  • DOI:
    10.3390/fermentation9020102
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Chen, Xiaodie;Lin, Man;Zhao, Zhifeng
  • 通讯作者:
    Zhao, Zhifeng

Lin, Man的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lin, Man', 18)}}的其他基金

Learning-based Energy Management for Cyber-Physical Systems
基于学习的网络物理系统能源管理
  • 批准号:
    RGPIN-2017-06001
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Learning-based Energy Management for Cyber-Physical Systems
基于学习的网络物理系统能源管理
  • 批准号:
    RGPIN-2017-06001
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Learning-based Energy Management for Cyber-Physical Systems
基于学习的网络物理系统能源管理
  • 批准号:
    RGPIN-2017-06001
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Learning-based Energy Management for Cyber-Physical Systems
基于学习的网络物理系统能源管理
  • 批准号:
    RGPIN-2017-06001
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Learning-based Energy Management for Cyber-Physical Systems
基于学习的网络物理系统能源管理
  • 批准号:
    RGPIN-2017-06001
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
System-level-low-power scheduling algorithm design for networked heterogeneous embedded systems
网络异构嵌入式系统系统级低功耗调度算法设计
  • 批准号:
    228114-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
System-level-low-power scheduling algorithm design for networked heterogeneous embedded systems
网络异构嵌入式系统系统级低功耗调度算法设计
  • 批准号:
    228114-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
System-level-low-power scheduling algorithm design for networked heterogeneous embedded systems
网络异构嵌入式系统系统级低功耗调度算法设计
  • 批准号:
    228114-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
System-level-low-power scheduling algorithm design for networked heterogeneous embedded systems
网络异构嵌入式系统系统级低功耗调度算法设计
  • 批准号:
    228114-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
System-level-low-power scheduling algorithm design for networked heterogeneous embedded systems
网络异构嵌入式系统系统级低功耗调度算法设计
  • 批准号:
    228114-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
  • 批准号:
    12305290
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
  • 批准号:
    82371110
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
CuAgSe基热电材料的结构特性与构效关系研究
  • 批准号:
    22375214
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
  • 批准号:
    82003509
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An autonomous machine learning-based molecular dynamics method that utilizes first-principles atomic energy calculation
一种基于自主机器学习的分子动力学方法,利用第一原理原子能计算
  • 批准号:
    23H03415
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
  • 批准号:
    2321224
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Prediction of thermospheric cooling based on magnetosphere-ionosphere-thermosphere energy propagation using machine learning
使用机器学习基于磁层-电离层-热层能量传播预测热层冷却
  • 批准号:
    22KF0368
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
  • 批准号:
    2321225
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Human-like continual robot learning based on three-level computational energy cost regulation
基于三级计算能量成本调节的类人持续学习机器人
  • 批准号:
    22H03670
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Combining Physics and Machine Learning-based Models for Full-Energy-Range Solar Energetic Particles Events Prediction
结合物理和基于机器学习的模型进行全能量范围太阳能高能粒子事件预测
  • 批准号:
    2204363
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Integrated Agent-Based Simulation, Machine Learning, and Optimization of the Energy-Food-Water Nexus
基于代理的集成模拟、机器学习和能量-食物-水关系的优化
  • 批准号:
    557180-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Dynamic Learning with Energy Based Models
使用基于能量的模型进行动态学习
  • 批准号:
    569252-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: Specific Energy-Based Prognosis for Machining Surface Integrity through Integration of Process Physics and Machine Learning
合作研究:通过过程物理和机器学习的集成,基于特定能量的加工表面完整性预测
  • 批准号:
    2040288
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Integrated Agent-Based Simulation, Machine Learning, and Optimization of the Energy-Food-Water Nexus
基于代理的集成模拟、机器学习和能量-食物-水关系的优化
  • 批准号:
    557180-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了