Synthesis biodegradable quantum materials for therapeutic applications

用于治疗应用的合成可生物降解量子材料

基本信息

  • 批准号:
    580940-2022
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This collaboration with the University of Wisconsin is aimed to develop a graphite-based material processing methods that produces innovative toxin-free biodegradable quantum-sized materials to tackle challenges in biomedical applications. Existing nanoparticles used for biomedical application are of large size (10~100nm) and contains residue toxic chemical substances resulting from material processing, which severely affect the biocompatibility and limit the functionality of the biomaterials. Many biomolecules and cellular structures are much smaller than the particles used for biomedical engineering. For instance, DNA molecules are 1-2nm in diameter and pores on cell nuclei membrane are less than 9 nm. We believe bringing particle size down to quantum regime (less than 5nm), closer to the size of biomolecules and cellular structure, will open up new possibilities for drug delivery, tissue engineering and therapeutic medicines. The applicant has developed a laser ablative materials processing method using MHz frequency femtosecond lasers, which could generate three dimensional nanostructures with unique spatial architecture and rare phases that are hard to obtain by any other means. The generated nanostructure is toxin-free and its morphology, architecture and properties are particularly suitable for drug delivery, theragnostics and tissue engineering. The University of Wisconsin brings expertise in regenerative medicine, cell biology and nature-mimicking biomaterials. Together, we will investigate the method of generating carbon-based quantum-sized structures from graphite. Graphite is selected as starting material due to its biodegradability. Earlier research has shown that carbon particles can be easily cleared out of organic system. Through nanoscale dimensional hierarchy and bio-chemical properties the targeted delivery, controlled release of therapeutic agents, theranostics, therapy and will be leveraged. The proposed research project provides opportunity for high quality personnel training and collaborative research while being profoundly beneficial to the Canadian economy and healthcare system through its innovations.
此次与威斯康星大学的合作旨在开发一种基于石墨的材料加工方法,以生产创新的无毒可生物降解量子尺寸材料,以应对生物医学应用中的挑战。现有用于生物医学应用的纳米颗粒尺寸较大(10~100nm),并且含有材料加工过程中残留的有毒化学物质,严重影响了生物相容性,限制了生物材料的功能。许多生物分子和细胞结构比用于生物医学工程的颗粒小得多。例如,DNA分子直径为1-2nm,核膜上的孔小于9nm。我们相信,将颗粒大小降低到量子级(小于5nm),更接近生物分子和细胞结构的大小,将为药物输送、组织工程和治疗药物开辟新的可能性。申请人开发了一种使用MHz频率飞秒激光器的激光烧蚀材料加工方法,该方法可以产生具有独特空间结构和稀有相的三维纳米结构,这是其他任何方法难以获得的。所生成的纳米结构是无毒的,其形态、结构和性质特别适合于药物输送、治疗和组织工程。威斯康星大学带来了再生医学、细胞生物学和模仿自然的生物材料方面的专业知识。我们将共同研究从石墨中产生碳基量子结构的方法。由于石墨具有生物可降解性,因此选择石墨作为起始材料。早期的研究表明,碳颗粒可以很容易地从有机系统中清除出去。通过纳米级的维度层次和生物化学特性,靶向递送,控制释放治疗剂,治疗,治疗和将被利用。拟议的研究项目为高质量的人才培训和合作研究提供了机会,同时通过其创新对加拿大经济和医疗保健系统产生深远的益处。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Venkatakrishnan, KrishnanK其他文献

Venkatakrishnan, KrishnanK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Biodegradable and Biocompatible Semiconductor Nanoparticles for Deep Tissue Imaging
用于深层组织成像的可生物降解和生物相容性半导体纳米颗粒
  • 批准号:
    9979273
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
Intrathecal delivery of radiation sensitizing nanoparticles in pediatric neuro-oncology
放射增敏纳米颗粒在儿科神经肿瘤学中的鞘内递送
  • 批准号:
    9811126
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
Intrathecal delivery of radiation sensitizing nanoparticles in pediatric neuro-oncology
放射增敏纳米颗粒在儿科神经肿瘤学中的鞘内递送
  • 批准号:
    10653853
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
Intrathecal delivery of radiation sensitizing nanoparticles in pediatric neuro-oncology
放射增敏纳米颗粒在儿科神经肿瘤学中的鞘内递送
  • 批准号:
    10200874
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
Fluorescence-based molecular imaging of in vivo release kinetics
基于荧光的体内释放动力学分子成像
  • 批准号:
    9429542
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
Fluorescence-based molecular imaging of in vivo release kinetics
基于荧光的体内释放动力学分子成像
  • 批准号:
    9257616
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
Models to predict protein biomaterial performance
预测蛋白质生物材料性能的模型
  • 批准号:
    8686837
  • 财政年份:
    2012
  • 资助金额:
    $ 1.82万
  • 项目类别:
Models to predict protein biomaterial performance
预测蛋白质生物材料性能的模型
  • 批准号:
    8476216
  • 财政年份:
    2012
  • 资助金额:
    $ 1.82万
  • 项目类别:
Models to predict protein biomaterial performance
预测蛋白质生物材料性能的模型
  • 批准号:
    8285441
  • 财政年份:
    2012
  • 资助金额:
    $ 1.82万
  • 项目类别:
Creating Safe Biodegradable Photoluminescent Implant Polymers
创造安全的可生物降解的光致发光植入聚合物
  • 批准号:
    8298146
  • 财政年份:
    2011
  • 资助金额:
    $ 1.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了