Understanding and Improving Search-Based Algorithms for Neural Sequence Generation

理解和改进基于搜索的神经序列生成算法

基本信息

  • 批准号:
    RGPIN-2022-04154
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Neural sequence models, such as recurrent neural networks and transformers, are commonly used in the modeling of sequential data and are the state-of-the-art approach for tasks such as machine translation and image captioning. Sequence generation from neural sequence models is typically done using the beam search algorithm that finds the approximately most likely output sequences, conditioned on the input. Recently, neural sequence models have been successfully applied to combinatorial search problems such as routing problems and molecule synthesis, where solutions are often required to satisfy some goal criteria. Notably, they also underlie most of the recent approaches for neural program synthesis, a long-standing grand challenge in AI with many applications. Despite their popularity, neural sequence models suffer from exposure bias and label bias due to their training and locally-normalized nature. Generation using beam search is susceptible to a range of deficiencies including performance degradation, lack of diversity and bias towards shorter sequences. Recently, in the goal-oriented setting, I showed that beam search suffers from large variability in performance. The proposed research program intends to significantly improve the performance of neural sequence generation by developing a deep empirical understanding of search-based generation in neural sequence models and devising novel, search-based, approaches aimed at addressing the above biases and deficiencies. The program is organized around three technical research themes and grounded in one central application domain: Theme 1 -- Advanced Search Algorithms for Goal-Oriented Neural Sequence Generation. We will develop a deeper understanding of the empirical challenges in goal-oriented sequence generation and devise beam search extensions, as well as novel search-based approaches, that address these challenges. Theme 2 -- Search-based Approaches for Sequence Generation with Learned Sequence-Level Scoring Models. We will develop sequence generation approaches that use learned sequence-level scoring models, such as energy-based models, to mitigate the impact of exposure and label bias. Theme 3 -- Understanding and Improving Reinforcement Learning for Neural Sequence Generation. We will develop empirical models for the interaction between RL-based training schemes and search-based sequence generation. Based on these models, we will devise strategies for combining RL-based training with search-based generation in highly-constrained problems. Application Domain -- Neural Program Synthesis. Neural program synthesis consists of generating sequences of instructions (programs) in a general or domain-specific computer language and is a holy grail in software engineering. Its different instantiations encompass a wide range of concrete applications in areas such as software engineering, natural language processing, and computer vision and will serve as the base for industrial collaborations.
神经序列模型,如递归神经网络和变压器,通常用于序列数据的建模,是机器翻译和图像字幕等任务的最先进方法。从神经序列模型生成序列通常使用波束搜索算法来完成,该算法以输入为条件,找到近似最可能的输出序列。最近,神经序列模型已被成功地应用于组合搜索问题,如路由问题和分子合成,解决方案往往需要满足一些目标标准。值得注意的是,它们也是最近大多数神经程序合成方法的基础,这是人工智能领域长期存在的巨大挑战,有许多应用。尽管神经序列模型很受欢迎,但由于其训练和局部归一化的性质,它们会受到暴露偏差和标签偏差的影响。使用波束搜索的生成容易受到一系列缺陷的影响,包括性能下降、缺乏多样性和偏向较短序列。最近,在面向目标的设置中,我展示了波束搜索在性能上存在很大的差异。拟议的研究计划旨在通过对神经序列模型中基于搜索的生成进行深入的实证理解,并设计旨在解决上述偏见和缺陷的新颖的基于搜索的方法,来显着提高神经序列生成的性能。该计划围绕三个技术研究主题进行组织,并以一个中心应用领域为基础:主题1 -面向目标的神经序列生成的高级搜索算法。我们将更深入地了解面向目标的序列生成的经验挑战,并设计波束搜索扩展,以及新的基于搜索的方法,以解决这些挑战。主题2 -基于搜索的序列生成方法与学习序列水平评分模型。我们将开发序列生成方法,使用学习的序列水平评分模型,如基于能量的模型,以减轻暴露和标签偏差的影响。主题3 -理解和改进神经序列生成的强化学习。我们将开发基于RL的训练方案和基于搜索的序列生成之间的相互作用的经验模型。基于这些模型,我们将设计策略,在高度约束的问题中将基于RL的训练与基于搜索的生成相结合。应用领域--神经程序综合。神经程序合成包括用通用或特定领域的计算机语言生成指令(程序)序列,是软件工程中的圣杯。它的不同实例涵盖了软件工程、自然语言处理和计算机视觉等领域的广泛具体应用,并将作为工业合作的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cohen, Eldan其他文献

Improving Patient Safety Event Report Classification with Machine Learning and Contextual Text Representation.

Cohen, Eldan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cohen, Eldan', 18)}}的其他基金

Understanding and Improving Search-Based Algorithms for Neural Sequence Generation
理解和改进基于搜索的神经序列生成算法
  • 批准号:
    DGECR-2022-00393
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Improving Optimization-Based Scheduling and Path Planning Decision Support: An Artificial Intelligence and Operations Research Approach With Applications to Surveillance and Search
改进基于优化的调度和路径规划决策支持:一种应用于监视和搜索的人工智能和运筹学方法
  • 批准号:
    RGPIN-2021-03495
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Heuristic Search by Machine Learning
通过机器学习改进启发式搜索
  • 批准号:
    RGPIN-2021-03205
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding and Improving Search-Based Algorithms for Neural Sequence Generation
理解和改进基于搜索的神经序列生成算法
  • 批准号:
    DGECR-2022-00393
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Elucidation of factors contributing to the inhibition of osteoarthritis progression by improving mechanical loading and search for new treatment methods
通过改善机械负荷阐明有助于抑制骨关节炎进展的因素并寻找新的治疗方法
  • 批准号:
    21H03053
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Improving Heuristic Search by Machine Learning
通过机器学习改进启发式搜索
  • 批准号:
    RGPIN-2021-03205
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Heuristic Search by Machine Learning
通过机器学习改进启发式搜索
  • 批准号:
    DGECR-2021-00119
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Improving Optimization-Based Scheduling and Path Planning Decision Support: An Artificial Intelligence and Operations Research Approach With Applications to Surveillance and Search
改进基于优化的调度和路径规划决策支持:一种应用于监视和搜索的人工智能和运筹学方法
  • 批准号:
    RGPIN-2021-03495
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Optimization-Based Scheduling and Path Planning Decision Support: An Artificial Intelligence and Operations Research Approach With Applications to Surveillance and Search
改进基于优化的调度和路径规划决策支持:一种应用于监视和搜索的人工智能和运筹学方法
  • 批准号:
    DGECR-2021-00189
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Collaborative Research: Improving Power Grids Weather Resilience through Model-free Dimension Reduction and Stochastic Search for Optimal Hardening
合作研究:通过无模型降维和随机搜索优化强化来提高电网的耐候能力
  • 批准号:
    1923145
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Improving access to treatment for children with anxiety disorders: A randomised controlled non-inferiority trial of positive search training
改善焦虑症儿童获得治疗的机会:积极搜索训练的随机对照非劣效性试验
  • 批准号:
    nhmrc : GNT1160891
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Project Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了