Improving Optimization-Based Scheduling and Path Planning Decision Support: An Artificial Intelligence and Operations Research Approach With Applications to Surveillance and Search
改进基于优化的调度和路径规划决策支持:一种应用于监视和搜索的人工智能和运筹学方法
基本信息
- 批准号:RGPIN-2021-03495
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In Canada, there are thousands of search and rescue (SAR) cases and thousands of missing person cases each year. Scheduling and path planning of search and surveillance operations for emergency response is a time-critical task. Optimization-based decision support systems (OBDSS) can help decision makers (DM) to find a valid and efficient plan or schedule in such situations and avoid life loss and injuries. However, at this time, there is no one-size fits all OBDSS for surveillance and search. OBDSS for emergency response are often built from scratch by researchers and developers. We recently worked on such an OBDSS for maritime SAR operations scheduling with researchers from Québec and the Canadian Coast Guard (CCG). Although an OBDSS helps a DM to task the available resources, the combinatorial explosion of possible recommendations to evaluate in order to find the best, or simply the lengthy simulations required to realistically assess the quality of possible recommendations, hinder the OBDSS efficiency. Furthermore, a DM often needs to evaluate multiple scenarios in a short time leading to multiple restarts of the recommendation module and to a suboptimal response. The main applications of our research are maritime SAR, land SAR, and surveillance (coverage) for emergency response. In such contexts, lives are often at stake. Therefore, we identified a need to improve both the quality and response time of the systems used in this context. Formally, we see the aforementioned applications as scheduling and path planning problems. One way to tackle such problems, using operations research, is to formulate them as optimization problems. Optimization problems are often solved in two steps: a modeling step and a solving step. During modeling, the problem is described in a formal language in terms of its constraints, e.g. number of searchers and search duration, and of its objective function, e.g. maximize the probability of finding survivors. The model is readable by a computer program we call a solver. The solver, during the solving step, search a recommendation that optimizes the objective function subject to the constraints. This leads to two possible bottlenecks in an OBDSS recommendation modules: modeling (or model generation) and solving. As a response to this, the projects tackled in this program are grouped in two complementary themes leveraging multiple combinations of artificial intelligence and operations research. The first theme encompasses projects to facilitate and accelerate the problem formulation (modeling) phase. This is done by using artificial intelligence to replace or simplify the expensive simulations needed to model a problem or evaluate a recommendation. The second theme concerns novel approaches, also based on artificial intelligence, to improve the performance of the solver on a given problem or on recurring problems either by simplifying the optimization models or by providing good starting points for the solver.
在加拿大,每年有成千上万的搜救案件和成千上万的失踪案件。应急响应搜索和监视行动的调度和路径规划是一项时间紧迫的任务。基于优化的决策支持系统(OBDSS)可以帮助决策者在这种情况下找到有效和有效的计划或时间表,避免生命损失和伤害。然而,目前还没有一种适用于所有OBDSS的监控和搜索方法。用于应急响应的OBDSS通常是由研究人员和开发人员从头开始构建的。最近,我们与qusamubec和加拿大海岸警卫队(CCG)的研究人员一起研究了海上搜救行动调度的OBDSS。尽管OBDSS可以帮助DM分配可用资源,但是为了找到最佳建议而评估的可能建议的组合爆炸,或者仅仅是实际评估可能建议的质量所需的冗长模拟,都会阻碍OBDSS的效率。此外,DM通常需要在短时间内评估多个场景,导致多次重新启动推荐模块并产生次优响应。我们研究的主要应用是海上SAR,陆地SAR和紧急响应的监视(覆盖)。在这种情况下,生命往往处于危险之中。因此,我们确定需要改进在此上下文中使用的系统的质量和响应时间。形式上,我们将上述应用程序视为调度和路径规划问题。利用运筹学解决这类问题的一种方法是将其表述为优化问题。优化问题通常分两步解决:建模步骤和求解步骤。在建模过程中,根据问题的约束条件(如搜索者的数量和搜索时间)和目标函数(如最大化找到幸存者的概率),用形式化语言描述问题。该模型可由我们称为求解器的计算机程序读懂。求解器在求解过程中,在约束条件下搜索最优目标函数的推荐。这导致了OBDSS推荐模块中的两个可能的瓶颈:建模(或模型生成)和求解。作为对此的回应,该计划处理的项目分为两个互补的主题,利用人工智能和运筹学的多种组合。第一个主题包含促进和加速问题表述(建模)阶段的项目。这是通过使用人工智能来取代或简化为问题建模或评估建议所需的昂贵模拟来实现的。第二个主题涉及同样基于人工智能的新方法,通过简化优化模型或为求解器提供良好的起点来提高求解器在给定问题或重复问题上的性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Morin, Michael其他文献
Safety and Effectiveness of a Novel Fluoroless Transseptal Puncture Technique for Lead-free Catheter Ablation: A Case Series.
- DOI:
10.19102/icrm.2020.110405 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:0
- 作者:
Salam, Tariq;Wilson, Lane;Morin, Michael - 通讯作者:
Morin, Michael
Cervical Spine Involvement in Mild Traumatic Brain Injury: A Review.
- DOI:
10.1155/2016/1590161 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:0
- 作者:
Morin, Michael;Langevin, Pierre;Fait, Philippe - 通讯作者:
Fait, Philippe
Morin, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Morin, Michael', 18)}}的其他基金
Improving Optimization-Based Scheduling and Path Planning Decision Support: An Artificial Intelligence and Operations Research Approach With Applications to Surveillance and Search
改进基于优化的调度和路径规划决策支持:一种应用于监视和搜索的人工智能和运筹学方法
- 批准号:
RGPIN-2021-03495 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Improving Optimization-Based Scheduling and Path Planning Decision Support: An Artificial Intelligence and Operations Research Approach With Applications to Surveillance and Search
改进基于优化的调度和路径规划决策支持:一种应用于监视和搜索的人工智能和运筹学方法
- 批准号:
DGECR-2021-00189 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Launch Supplement
Planification multicritère et plans de recherche et de surveillance basés sur la visibilité des chercheurs en milieu incertain
规划多目标和计划研究和监视不确定环境中的可见性
- 批准号:
427070-2012 - 财政年份:2013
- 资助金额:
$ 1.89万 - 项目类别:
Postgraduate Scholarships - Doctoral
Planification multicritère et plans de recherche et de surveillance basés sur la visibilité des chercheurs en milieu incertain
规划多目标和计划研究和监视不确定环境中的可见性
- 批准号:
427070-2012 - 财政年份:2012
- 资助金额:
$ 1.89万 - 项目类别:
Postgraduate Scholarships - Doctoral
相似国自然基金
基于人工智能探究加味桃红四物汤改善心肌缺血再灌注损伤的成分组合优化及其协同作用机制
- 批准号:2024PT005
- 批准年份:2024
- 资助金额:17.5 万元
- 项目类别:省市级项目
基于积雪相变方案优化的青藏高原短时积雪模拟改进
- 批准号:42305086
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于风险协同管理的急性胸痛救治体系衔接优化对改善患者安全的实施科学研究
- 批准号:72274005
- 批准年份:2022
- 资助金额:41 万元
- 项目类别:面上项目
基于供给数量优化和质量改进的猪肉供应链管理策略研究
- 批准号:72171202
- 批准年份:2021
- 资助金额:48 万元
- 项目类别:面上项目
基于改进的水平集方法的结构拓扑优化模型研究
- 批准号:12072114
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
基于整体可靠度的半刚性钢框架结构体系多阶段优化研究
- 批准号:51978279
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
基于PCA-MQIF、DBNs建模结合多目标GA集成优化缓控释药系统组分配比和工艺优化的效果研究
- 批准号:81973155
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
基于计算机试验的质量设计的理论和应用研究
- 批准号:71871119
- 批准年份:2018
- 资助金额:50.0 万元
- 项目类别:面上项目
基于改进絮体检测与跟踪的微涡流絮凝工艺复杂流态可视化与过程模型研究
- 批准号:61872141
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
基于多源数据的单线路公共汽车交通运行健康诊断及改善方法研究
- 批准号:61873190
- 批准年份:2018
- 资助金额:51.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Adaptive Ising-machine-based Solvers for Large-scale Real-world Geospatial Optimization Problems
基于自适应 Ising 机的大规模现实世界地理空间优化问题求解器
- 批准号:
24K20779 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Explanation-based Optimization of Diversified Information Retrieval to Enhance AI Systems
职业:基于解释的多样化信息检索优化以增强人工智能系统
- 批准号:
2339932 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Optimization-based Implicit Deep Learning, Theory and Applications
基于优化的隐式深度学习、理论与应用
- 批准号:
2309810 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
SBIR Phase I: Optimization and scaling of ladder polymers for membrane-based gas separations
SBIR 第一阶段:用于膜基气体分离的梯形聚合物的优化和规模化
- 批准号:
2151444 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Design, Analysis, and Optimization of Equitable and Value-based Baseline Testing Policies for Sports-Related Concussion
运动相关脑震荡公平且基于价值的基线测试政策的设计、分析和优化
- 批准号:
10649169 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Speeding-up SAT-based Constraint Optimization Solvers
加速基于 SAT 的约束优化求解器
- 批准号:
23K11047 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Optimization of a Novel Compliant Mechanisms-Based Laparoscope Cleaning Device
SBIR 第一阶段:基于新型顺应机制的腹腔镜清洁装置的优化
- 批准号:
2213695 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Coupling PDE-Based Computational Inversion and Learning Via Weighted Optimization
通过加权优化耦合基于偏微分方程的计算反演和学习
- 批准号:
2309802 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Development and application of learning theory for uncertainty in Bayesian deep learning based on multi-objective optimization
基于多目标优化的贝叶斯深度学习不确定性学习理论发展及应用
- 批准号:
23K16948 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists