Collaborative Research: Improving Power Grids Weather Resilience through Model-free Dimension Reduction and Stochastic Search for Optimal Hardening
合作研究:通过无模型降维和随机搜索优化强化来提高电网的耐候能力
基本信息
- 批准号:1923145
- 负责人:
- 金额:$ 7.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Severe weather is the leading cause of power outages in the United States, leading to tremendous economic and social costs. Given days-ahead weather forecasts, hardening power lines can significantly mitigate cascading outrage risks, shorten the time to restore electricity, and therefore improve power grids weather resilience. Due to resource constraints, such as time and/or budget, it is important to identify the optimal hardening plan with the constraints. Given the large number of power lines on the grids, searching for the optimal subset of power lines of hardening is challenging. In this research, a novel searching approach for optimal hardening plan with practical constraints is studied. The method takes the advantages of high-dimensional data analysis from statistics and discrete optimization via stochastic simulation from operations research and makes fundamental theoretical and algorithmic advances to optimize power grids hardening plans and reduce cascading power outage risks in severe weather. Because of the broad economic and societal importance of power grids, the research has broader impact on the welfare and security of the country.This project develops a model-free dimension reduction method to improve the computational efficiency of discrete optimization via simulation for improving power grids weather resilience through optimal power line hardening. The dimension reduction method ranks the subsets of the transmission lines according to power loss caused by their disconnection from power grids. The new method does not need to assume a specific statistical joint model between power loss and all considered line combinations and only uses the marginal information of the line combinations, and thus are generally applicable for hardening planning. A new stochastic search algorithm that exploits the dimension reduction capability is then proposed to reduce the size of the effective search space given resource constraints when preparing for severe weather conditions. To improve computational efficiency, the stochastic search algorithm uses an informative Gaussian mixture prior to incorporate dimension reduction results while achieving asymptotical convergence and constructs a hierarchical sampling distribution using dimension reduction results. The model-free dimension reduction and stochastic search algorithm are generally applicable to a variety of other disciplines, e.g., the protection of other critical civil infrastructures such as road networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
恶劣天气是美国停电的首要原因,导致巨大的经济和社会损失。鉴于提前几天的天气预报,加强输电线可以显著缓解连锁愤怒的风险,缩短恢复电力的时间,从而提高电网的耐候性。由于时间和/或预算等资源限制,确定具有这些限制的最优强化计划非常重要。考虑到电网上的大量电力线,寻找最优的电力线硬化子集是具有挑战性的。本文研究了一种具有实用约束的最优强化方案的搜索方法。该方法利用统计学中的高维数据分析和运筹学中随机模拟的离散优化方法,在优化电网强化方案、降低恶劣天气下的连锁停电风险等方面取得了基础理论和算法上的进展。由于电网具有广泛的经济和社会重要性,该研究对国家的福利和安全具有更广泛的影响,本项目开发了一种无模型降维方法,通过仿真提高离散优化的计算效率,通过优化电力线硬化来提高电网的耐候性。降维方法根据输电线路与电网断开造成的功率损失对输电线路的子集进行排序。该方法不需要假设线损与所有考虑的线路组合之间建立特定的统计联合模型,只利用线路组合的边际信息,因此对硬化规划具有普遍的适用性。然后提出了一种新的随机搜索算法,该算法利用降维能力,在资源受限的情况下减小了有效搜索空间的大小,以应对恶劣天气条件。为了提高计算效率,随机搜索算法首先使用信息丰富的高斯混合来融合降维结果,同时获得渐近收敛,并利用降维结果构造分层抽样分布。无模型降维和随机搜索算法通常适用于各种其他学科,例如,保护其他关键民用基础设施,如公路网。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient estimation of a risk measure requiring two-stage simulation optimization
- DOI:10.1016/j.ejor.2022.06.028
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Tianxiang Wang;Jie Xu;Jianqiang Hu;C.-H. Chen
- 通讯作者:Tianxiang Wang;Jie Xu;Jianqiang Hu;C.-H. Chen
Analytics with digital-twinning: A decision support system for maintaining a resilient port
- DOI:10.1016/j.dss.2021.113496
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Chenhao Zhou;Jie Xu;Elise Miller-Hooks;Weiwen Zhou;Chun-Hung Chen;L. Lee;E. P. Chew;Haobin Li
- 通讯作者:Chenhao Zhou;Jie Xu;Elise Miller-Hooks;Weiwen Zhou;Chun-Hung Chen;L. Lee;E. P. Chew;Haobin Li
An Optimal Computing Budget Allocation Tree Policy for Monte Carlo Tree Search
蒙特卡罗树搜索的最优计算预算分配树策略
- DOI:10.1109/tac.2021.3088792
- 发表时间:2022
- 期刊:
- 影响因子:6.8
- 作者:Li, Yunchuan;Fu, Michael C.;Xu, Jie
- 通讯作者:Xu, Jie
Real-time digital twin-based optimization with predictive simulation learning
- DOI:10.1080/17477778.2022.2046520
- 发表时间:2022-03
- 期刊:
- 影响因子:2.5
- 作者:Travis Goodwin-;Jie Xu;N. Çelik;Chun-Hung Chen
- 通讯作者:Travis Goodwin-;Jie Xu;N. Çelik;Chun-Hung Chen
Robust Sampling Budget Allocation Under Deep Uncertainty
- DOI:10.1109/tsmc.2022.3144363
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Michael Perry;Jie Xu;Edward Huang;C.-H. Chen
- 通讯作者:Michael Perry;Jie Xu;Edward Huang;C.-H. Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Xu其他文献
Basic principles and optical system design of 17.48 keV high-throughput modified Wolter x-ray microscope
17.48 keV高通量改良Wolter X射线显微镜基本原理及光学系统设计
- DOI:
10.1063/5.0105015 - 发表时间:
2022 - 期刊:
- 影响因子:1.6
- 作者:
Yaran Li;Wenjie Li;Liang Chen;Huanzhen Ma;Xinye Xu;Jie Xu;Xin Wang;Baozhong Mu - 通讯作者:
Baozhong Mu
A semi-analytical algorithm for deriving the particle size distribution slope of turbid inland water based on OLCI data: a case study in Lake Hongze
基于OLCI数据推导内陆浑浊水体粒径分布斜率的半解析算法——以洪泽湖为例
- DOI:
10.1016/j.envpol.2020.116288 - 发表时间:
2020 - 期刊:
- 影响因子:8.9
- 作者:
Shaohua Lei;Jie Xu;Yunmei Li;Lin Li;Heng Lyu;Ge Liu;Yu Chen - 通讯作者:
Yu Chen
Chinese Researchers, Scholarly Communication Behavious, and Trust
中国研究者、学术交流行为和信任
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:2.8
- 作者:
David Nicholas;Jie Xu;Lifang Xu;Jing Su;Anthony Watkinson - 通讯作者:
Anthony Watkinson
Proton-assisted growth of ultra-flat graphene films
质子辅助生长超平坦石墨烯薄膜
- DOI:
10.1038/s41586-019-1870-3 - 发表时间:
2020-01 - 期刊:
- 影响因子:0
- 作者:
Guowen Yuan;Dongjing Lin;Yong Wang;Xianlei Huang;Wang Chen;Xuedong Xie;Junyu Zong;Qian-Qian Yuan;Hang Zheng;Di Wang;Jie Xu;Shao-Chun Li;Yi Zhang;Jian Sun;Xiaoxiang Xi;Libo Gao - 通讯作者:
Libo Gao
A facile and efficient method to improve the selectivity of methyl lactate in the chemocatalytic conversion of glucose catalyzed by homogeneous Lewis acid
一种简便有效的提高均相路易斯酸催化葡萄糖化学催化转化乳酸甲酯选择性的方法
- DOI:
10.1016/j.molcata.2014.01.017 - 发表时间:
2014-07 - 期刊:
- 影响因子:0
- 作者:
Xiaomei Yang;Yunlai Su;Tiangliang Lu;Jie Xu - 通讯作者:
Jie Xu
Jie Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Xu', 18)}}的其他基金
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
- 批准号:
2319780 - 财政年份:2023
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
Elucidating Mechanisms of Metal Sulfide-Enabled Growth of Anoxygenic Photosynthetic Bacteria Using Transcriptomic, Aqueous/Surface Chemical, and Electron Microscopic Tools
使用转录组、水/表面化学和电子显微镜工具阐明金属硫化物促进不产氧光合细菌生长的机制
- 批准号:
2311021 - 财政年份:2023
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
SAI-R: Strengthening American Electricity Infrastructure for an Electric Vehicle Future: An Energy Justice Approach
SAI-R:加强美国电力基础设施以实现电动汽车的未来:能源正义方法
- 批准号:
2228603 - 财政年份:2022
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
CAREER: Wireless InferNets: Enabling Collaborative Machine Learning Inference on the Network Path
职业:无线推理网:在网络路径上实现协作机器学习推理
- 批准号:
2044991 - 财政年份:2021
- 资助金额:
$ 7.25万 - 项目类别:
Continuing Grant
Collaborative Research: SWIFT: SMALL: Understanding and Combating Adversarial Spectrum Learning towards Spectrum-Efficient Wireless Networking
合作研究:SWIFT:SMALL:理解和对抗对抗性频谱学习以实现频谱高效的无线网络
- 批准号:
2029858 - 财政年份:2020
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Towards a Resource Rationing Framework for Wireless Federated Learning
CCSS:协作研究:无线联邦学习的资源配给框架
- 批准号:
2033681 - 财政年份:2020
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Towards Automated and QoE-driven Machine Learning Model Selection for Edge Inference
合作研究:CNS 核心:小型:面向边缘推理的自动化和 QoE 驱动的机器学习模型选择
- 批准号:
2006630 - 财政年份:2020
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
Collaborative Research: Towards High-Throughput Label-Free Circulating Tumor Cell Separation using 3D Deterministic Dielectrophoresis (D-Cubed)
合作研究:利用 3D 确定性介电泳 (D-Cubed) 实现高通量无标记循环肿瘤细胞分离
- 批准号:
1917295 - 财政年份:2019
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
Collaborative Research: NSF/ENG/ECCS-BSF: Complex liquid droplet structures as new optical and optomechanical materials
合作研究:NSF/ENG/ECCS-BSF:复杂液滴结构作为新型光学和光机械材料
- 批准号:
1711798 - 财政年份:2017
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
EAGER-Dynamic Data: A New Scalable Paradigm for Optimal Resource Allocation in Dynamic Data Systems via Multi-Scale and Multi-Fidelity Simulation and Optimization
EAGER-动态数据:通过多尺度和多保真度仿真和优化实现动态数据系统中最佳资源分配的新可扩展范式
- 批准号:
1462409 - 财政年份:2015
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Improving Upper Division Physics Education and Strengthening Student Research Opportunities at 14 HSIs in California
合作研究:改善加州 14 所 HSI 的高年级物理教育并加强学生研究机会
- 批准号:
2345092 - 财政年份:2024
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
Collaborative Research: Improving Upper Division Physics Education and Strengthening Student Research Opportunities at 14 HSIs in California
合作研究:改善加州 14 所 HSI 的高年级物理教育并加强学生研究机会
- 批准号:
2345093 - 财政年份:2024
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
SBP: Collaborative Research: Improving Engagement with Professional Development Programs by Attending to Teachers' Psychosocial Experiences
SBP:协作研究:通过关注教师的社会心理体验来提高对专业发展计划的参与度
- 批准号:
2314254 - 财政年份:2023
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
Collaborative Research: Improving Worker Safety by Understanding Risk Compensation as a Latent Precursor of At-risk Decisions
合作研究:通过了解风险补偿作为风险决策的潜在前兆来提高工人安全
- 批准号:
2326937 - 财政年份:2023
- 资助金额:
$ 7.25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Measuring, Validating and Improving upon App-Based Privacy Nutrition Labels
合作研究:SaTC:核心:小型:测量、验证和改进基于应用程序的隐私营养标签
- 批准号:
2247952 - 财政年份:2023
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
Collaborative Research: Reducing Model Uncertainty by Improving Understanding of Pacific Meridional Climate Structure during Past Warm Intervals
合作研究:通过提高对过去温暖时期太平洋经向气候结构的理解来降低模型不确定性
- 批准号:
2303568 - 财政年份:2023
- 资助金额:
$ 7.25万 - 项目类别:
Continuing Grant
Collaborative Research: Improving Model Representations of Antarctic Ice-shelf Instability and Break-up due to Surface Meltwater Processes
合作研究:改进地表融水过程导致的南极冰架不稳定和破裂的模型表示
- 批准号:
2213704 - 财政年份:2023
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
- 批准号:
2226647 - 财政年份:2023
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
- 批准号:
2226648 - 财政年份:2023
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CPS: Socially Informed Traffic Signal Control for Improving Near Roadway Air Quality
合作研究:CISE-MSI:RCBP-RF:CPS:用于改善附近道路空气质量的社会知情交通信号控制
- 批准号:
2318696 - 财政年份:2023
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant