Uncertainty-aware full-body motion planning of aerial and multi-legged robots for urban search and rescue operations

用于城市搜救行动的空中和多足机器人的不确定性全身运动规划

基本信息

  • 批准号:
    560791-2020
  • 负责人:
  • 金额:
    $ 7.29万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

With the increasing severity and frequency of natural disasters such as tornados, floods, and many others, the 21st Century presents unique challenges to disaster response. The capabilities of autonomous robots have the potential to be used as effective tools for Urban Search & Rescue (USAR) operations in complex confined environments - both structured and unstructured - such as those encountered inside collapsed buildings and in burning infrastructure, among many others. However, major challenges related to autonomy, locomotion, and adaptability remain before robots can be effectively deployed inside such spaces where safety-critical decisions must often be made despite uncertainty in the estimation, execution, and the environment. These problems can often be cast as a class of problems for which finding an exact solution is challenging. This project will develop whole-body tractable motion-planning solutions enabling robotic systems to operate inside chaotic hazardous confined spaces where real-time operation is essential. The results will enable to deploy drones and multi-legged robots under uncertainty estimation via sophisticated estimation schemes like visual-inertial odometry that depend on the distribution of the features in the environment. The work is important to reduce the effects of natural and other disasters that cause billions of dollars in economic losses every year. Using the wealth of experience in Canada's emergency agencies and disaster response, the project will develop effective robotic tools for USAR that can be in position and deployed directly following an incident of structural collapse. The results will render emergency preparedness and response activities more effective and thereby save more lives and reduce community recovery time. The outcomes will improve efficiency in disaster response operations at a disaster site and provide the means to increase capacity to prepare for, mobilize and coordinate USAR assistance in support of affected communities in collapsed structure emergencies. The results will support capacity-building at the national, global, and regional levels. In collaboration with first response organizations, 6 graduate and 10 BSc students will be trained in a multidisciplinary team environment.
随着龙卷风、洪水等自然灾害日益严重和频繁,世纪对灾害响应提出了独特的挑战。自主机器人的能力有可能在复杂的受限环境中(包括结构化和非结构化)用作城市搜索和救援(USAR)行动的有效工具,例如在倒塌的建筑物内和燃烧的基础设施中遇到的情况。然而,在机器人可以有效地部署在这样的空间内之前,仍然存在与自主性,运动性和适应性相关的主要挑战,尽管在估计,执行和环境中存在不确定性,但通常必须做出安全关键决策。这些问题通常可以被视为一类问题,寻找精确的解决方案是具有挑战性的。该项目将开发全身易处理的运动规划解决方案,使机器人系统能够在混乱的危险密闭空间内运行,其中实时操作至关重要。这些结果将使无人机和多腿机器人能够通过复杂的估计方案(如视觉惯性里程计)在不确定性估计下部署,这些估计方案取决于环境中特征的分布。这项工作对于减少每年造成数十亿美元经济损失的自然灾害和其他灾害的影响非常重要。利用加拿大应急机构和灾害响应的丰富经验,该项目将为USAR开发有效的机器人工具,这些工具可以在结构倒塌事件发生后直接就位和部署。其结果将使应急准备和反应活动更加有效,从而挽救更多生命,减少社区恢复时间。这些成果将提高灾害现场救灾行动的效率,并为提高准备、动员和协调USAR援助的能力提供手段,以支持受倒塌结构紧急情况影响的社区。这些成果将支持国家、全球和区域各级的能力建设。与第一反应组织合作,6名研究生和10名理学士学生将在多学科团队环境中接受培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RamirezSerrano, AlejandroA其他文献

RamirezSerrano, AlejandroA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

动态无线传感器网络弹性化容错组网技术与传输机制研究
  • 批准号:
    61001096
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于计算和存储感知的运动估计算法与结构研究
  • 批准号:
    60803013
  • 批准年份:
    2008
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Situation-aware Multi-sided Personalised Analytics in Spatial Crowdsourcing
空间众包中的态势感知多边个性化分析
  • 批准号:
    DP240100356
  • 财政年份:
    2024
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Projects
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
  • 批准号:
    EP/X040828/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Research Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Standard Grant
Traversing the Gray Zone with Scale-aware Turbulence Closures
通过尺度感知的湍流闭合穿越灰色区域
  • 批准号:
    2337399
  • 财政年份:
    2024
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Standard Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
  • 批准号:
    2340089
  • 财政年份:
    2024
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Standard Grant
CAREER: Psychology-aware Human-in-the-Loop Cyber-Physical-System (HCPS): Methodologies, Algorithms, and Deployment
职业:具有心理学意识的人在环网络物理系统 (HCPS):方法、算法和部署
  • 批准号:
    2339266
  • 财政年份:
    2024
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Continuing Grant
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
  • 批准号:
    2339746
  • 财政年份:
    2024
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Continuing Grant
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了