Computational methods for chromatin data
染色质数据的计算方法
基本信息
- 批准号:RGPIN-2022-05134
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Chromatin structure and the presence of associated proteins like transcription factors and histones control the transcription of each eukaryotic gene, directly or indirectly. Fully understanding gene regulation requires knowledge of detailed properties of chromatin, including interacting proteins, in a wide range of experimental conditions. Data on chromatin properties come from an ever-increasing variety of genomic assays. Computational methods for working with these data have not kept up-neither with the diversity of data types available nor the capabilities of software in other areas of genomics. There exists an unmet need for better computational methods for chromatin data. Using specific genomic sequencing assays, we can interrogate individual chromatin properties. For example, the chromatin immunoprecipitation-sequencing (ChIP-seq) and cleavage under targets and release using nuclease (CUT&RUN) assays determine the location of DNA-associated proteins. The assay for transposase-accessible chromatin-sequencing (ATAC-seq) determines the location of open chromatin. These methods have two major aspects in common. First, these assays produce raw data in the form of DNA sequence reads. Second, one can determine chromatin properties for any region of a reference genome by counting how often these reads map to that region. This process transforms the raw sequencing reads into a signal map of some property across the whole genome. The purpose of this research program is to transform raw data from chromatin assays into information that illuminates the workings of eukaryotic gene regulation and to enable others to do the same. Objectives. We will continue this research program through the following objectives: 1. Develop computational methods for CUT&RUN quantification and peak calling using spike-in controls. 2. Identify key genomic elements for gene regulation through integrative analysis of many datasets with Segway. 3. Predict difficult-to-measure chromatin properties from readily available data through Virtual ChIP-seq. Applicant. Dr. Michael Hoffman is a leader in computational methods for epigenomic analysis. He has formal training in computational genomics, machine learning, and biochemistry. He has created several influential methods which led to multiple highly cited papers and sustainable epigenomics software used daily by researchers around the world. Impact. This research program will lead to new methods for analysis of chromatin data and a better understanding of gene regulation. It will produce easy-to-use, freely available software and annotations, accelerating reproducible analysis of chromatin data by the genomics community.
染色质结构和相关蛋白质如转录因子和组蛋白的存在直接或间接地控制着每个真核基因的转录。充分了解基因调控需要了解染色质的详细性质,包括在广泛的实验条件下相互作用的蛋白质。有关染色质特性的数据来自越来越多的基因组分析。处理这些数据的计算方法没有跟上--既没有可用的数据类型的多样性,也没有基因组学其他领域的软件的能力。对染色质数据的更好的计算方法存在着尚未得到满足的需求。使用特定的基因组测序分析,我们可以询问单个染色质的特性。例如,染色质免疫沉淀测序(CHIP-SEQ)和靶标下裂解和核酸酶释放(CUT&RUN)分析确定了DNA相关蛋白质的位置。转座酶可及染色质测序分析(ATAC-SEQ)确定开放染色质的位置。这些方法有两个主要方面的共同点。首先,这些分析以DNA序列读取的形式产生原始数据。其次,人们可以通过计算这些读数映射到该区域的频率来确定参考基因组的任何区域的染色质属性。这一过程将原始的测序读数转化为整个基因组中某些属性的信号图谱。这项研究计划的目的是将染色质分析的原始数据转化为阐明真核基因调控工作的信息,并使其他人能够做同样的事情。目标。我们将通过以下目标继续这项研究计划:1.开发削减和运行量化的计算方法,以及使用尖峰控制的高峰呼叫。2.通过使用Segway对多个数据集进行综合分析,确定基因调控的关键基因组元件。3.通过虚拟芯片序列从现成的数据中预测难以测量的染色质属性。申请人。迈克尔·霍夫曼博士是表观基因组分析计算方法的领导者。他接受过计算基因组学、机器学习和生物化学方面的正式培训。他创造了几种有影响力的方法,这些方法导致了多篇高被引用的论文和世界各地研究人员每天使用的可持续表观基因组学软件。冲击力。这项研究计划将带来分析染色质数据的新方法,并更好地理解基因调控。它将产生易于使用、免费提供的软件和注释,加快基因组学社区对染色质数据的可重复分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hoffman, Michael其他文献
Multilevel Learner Modeling in Training Environments for Complex Decision Making
- DOI:
10.1109/tlt.2019.2923352 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:3.7
- 作者:
Biswas, Gautam;Rajendran, Ramkumar;Hoffman, Michael - 通讯作者:
Hoffman, Michael
Coronary angiography of the ex-situ beating donor heart in a portable organ care system.
- DOI:
10.1002/ccd.30455 - 发表时间:
2022-12 - 期刊:
- 影响因子:2.3
- 作者:
Meredith, Thomas;Scheuer, Sarah;Hoffman, Michael;Joshi, Yashutosh;Kathir, Krishna;Gunalingam, Brendan;Roy, David;Wilson, Stephanie;Jansz, Paul;Macdonald, Peter;Muller, David - 通讯作者:
Muller, David
PLANAtools-An interactive gene expression repository for the planarian Schmidtea mediterranea.
- DOI:
10.3389/fcell.2023.1149537 - 发表时间:
2023 - 期刊:
- 影响因子:5.5
- 作者:
Hoffman, Michael;Wurtzel, Omri - 通讯作者:
Wurtzel, Omri
Mechanical modulation of vertebral growth in the fusionless treatment of progressive scoliosis in an experimental model
- DOI:
10.1097/01.brs.0000218662.78165.b1 - 发表时间:
2006-05-20 - 期刊:
- 影响因子:3
- 作者:
Braun, John T.;Hoffman, Michael;Bachus, Kent N. - 通讯作者:
Bachus, Kent N.
Hoffman, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hoffman, Michael', 18)}}的其他基金
Transcription factor recognition models with modified nucleobases
具有修饰核碱基的转录因子识别模型
- 批准号:
RGPIN-2015-03948 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Transcription factor recognition models with modified nucleobases
具有修饰核碱基的转录因子识别模型
- 批准号:
RGPIN-2015-03948 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Transcription factor recognition models with modified nucleobases
具有修饰核碱基的转录因子识别模型
- 批准号:
RGPIN-2015-03948 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Transcription factor recognition models with modified nucleobases
具有修饰核碱基的转录因子识别模型
- 批准号:
RGPIN-2015-03948 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Transcription factor recognition models with modified nucleobases
具有修饰核碱基的转录因子识别模型
- 批准号:
RGPIN-2015-03948 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Transcription factor recognition models with modified nucleobases
具有修饰核碱基的转录因子识别模型
- 批准号:
RGPIN-2015-03948 - 财政年份:2016
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Transcription factor recognition models with modified nucleobases
具有修饰核碱基的转录因子识别模型
- 批准号:
RGPIN-2015-03948 - 财政年份:2015
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Development of mass spectrometric methods for the analysis of post translational modifications on proteins
开发用于分析蛋白质翻译后修饰的质谱方法
- 批准号:
333665-2006 - 财政年份:2007
- 资助金额:
$ 3.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of mass spectrometric methods for the analysis of post translational modifications on proteins
开发用于分析蛋白质翻译后修饰的质谱方法
- 批准号:
333665-2006 - 财政年份:2006
- 资助金额:
$ 3.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
An Mass spectrometric analysis of the Phosphotyrosine dependent signalling of the Insullin Pathway
胰岛素途径磷酸酪氨酸依赖性信号传导的质谱分析
- 批准号:
320297-2005 - 财政年份:2005
- 资助金额:
$ 3.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
High-resolution extended-depth phase-engineered objectives to accelerate spatial 'omics R&D through computational optics
高分辨率扩展深度阶段工程物镜加速空间组学研究
- 批准号:
10761173 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Discovering human divergent activity-regulated elements using comparative, computational, and functional approaches
使用比较、计算和功能方法发现人类不同活动调节的元素
- 批准号:
10779701 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Computational Approaches for Studying Transcription Elongation Control in Cancer
研究癌症转录延伸控制的计算方法
- 批准号:
10516514 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Computational Methods for Inferring Single-cell DNA Methylation and its Spatial Landscape
推断单细胞 DNA 甲基化及其空间景观的计算方法
- 批准号:
10679088 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Computational methods for studying single-cell 3D genome
研究单细胞 3D 基因组的计算方法
- 批准号:
10570830 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Computational Approaches for Studying Transcription Elongation Control in Cancer
研究癌症转录延伸控制的计算方法
- 批准号:
10697319 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Computational methods for studying single-cell 3D genome
研究单细胞 3D 基因组的计算方法
- 批准号:
10392079 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Computational methods for delineating cell context-specific regulatory programs
描述细胞特定调节程序的计算方法
- 批准号:
10809085 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Computational Methods to Characterize Structure and Dynamics of the Nucleosome Core Particle
表征核小体核心颗粒结构和动力学的计算方法
- 批准号:
10442803 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Computational Methods for Inferring Single-cell DNA Methylation and its Spatial Landscape
推断单细胞 DNA 甲基化及其空间景观的计算方法
- 批准号:
10665219 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别: