Next Generation Video Surveillance for Environmental Monitoring and Protection
用于环境监测和保护的下一代视频监控
基本信息
- 批准号:RGPIN-2022-03466
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Video surveillance systems have become ubiquitous in recent years in homes, offices, schools, and shopping centers. They are also emerging in environmental protection, given their ability to remotely view, monitor, and send alerts. Compared with the traditional pressure sensors, mass volume calculations, and gas absorption spectroscopy that are widely used by industry today, using video images has the potential to detect a fugitive leak at a very early stage. However, the application of video surveillance to environmental monitoring and protection has not yet been well studied in cases where non-rigid polymorphic objects such as liquid/gas leaks and smoke emissions need to be detected and measured. Recent evidence of oil spilling from pipelines and pump stations, greenhouse gas emissions, wildland fires and smoke advisories show an urgent need for an efficient and effective system to monitor polymorphic objects, but the fugitive and dynamic nature of these environmental hazards makes them technically challenging to monitor. Moreover, nowadays a surveillance system consists of different types of data acquisition devices (multimodal). Different modal data has its own advantages and can be fused together for integrated data analysis, but existing techniques, which have been promising for color images and rigid objects over the last decades, cannot yet meet the demands of multi-modality analysis and non-rigid polymorphic object analysis for liquid/gas leaks or smoke emissions. An additional challenge is that these data can be computationally expensive to analyze and require real-time functionality. Thus, there is a need to advance lightweight, fast and efficient networks. The long-term vision of the proposed research program is to create a powerful, efficient and effective monitoring system based on video surveillance to monitor and protect our physical environment. To advance my long-term vision, the short-term objective of this research over the next five years is to propose innovative approaches to solve several problems that are associated with multi-modality analysis/non-rigid polymorphic object analysis and network size and complexity. In particular, I aim to advance background modeling and subtraction schemes, propose learning-based effective representation of non-rigid objects, explore learning-based 3D reconstruction techniques for non-rigid objects, and investigate lightweight design and fast training strategies for the aforementioned deep learning networks. The proposed research program will provide a comprehensive training platform for highly qualified personnel (HQP) to perform innovative research on image processing, computer vision, video surveillance and machine learning.
近年来,视频监控系统在家庭、办公室、学校和购物中心变得无处不在。它们也出现在环境保护领域,因为它们能够远程查看,监控和发送警报。与当今工业广泛使用的传统压力传感器、质量体积计算和气体吸收光谱相比,使用视频图像具有在非常早期阶段检测瞬时泄漏的潜力。然而,在需要检测和测量诸如液体/气体泄漏和烟雾排放的非刚性多态对象的情况下,视频监控在环境监测和保护中的应用尚未得到很好的研究。最近的证据表明,石油从管道和泵站泄漏,温室气体排放,荒地火灾和烟雾排放表明,迫切需要一个高效和有效的系统来监测多形态物体,但这些环境危害的易逝性和动态性使它们在技术上具有挑战性的监测。此外,如今的监控系统由不同类型的数据采集设备(多模式)组成。不同模态的数据有其自身的优势,可以融合在一起进行综合数据分析,但现有的技术,在过去的几十年里,已经有希望的彩色图像和刚性对象,还不能满足多模态分析和非刚性多态对象分析的液体/气体泄漏或烟雾排放的需求。另一个挑战是,这些数据的分析计算成本可能很高,并且需要实时功能。因此,需要推进轻量级、快速和高效的网络。拟议研究计划的长期愿景是创建一个强大,高效和有效的基于视频监控的监控系统,以监控和保护我们的物理环境。 为了推进我的长期愿景,本研究在未来五年的短期目标是提出创新方法来解决与多模态分析/非刚性多态对象分析以及网络大小和复杂性相关的几个问题。特别是,我的目标是推进背景建模和减法方案,提出基于学习的非刚性物体的有效表示,探索基于学习的非刚性物体3D重建技术,并研究上述深度学习网络的轻量级设计和快速训练策略。拟议的研究计划将为高素质人员(HQP)提供一个全面的培训平台,以进行图像处理,计算机视觉,视频监控和机器学习方面的创新研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Du, Shan其他文献
Interactions between fibroin and sericin proteins from Antheraea pernyi and Bombyx mori silk fibers
- DOI:
10.1016/j.jcis.2016.06.030 - 发表时间:
2016-09-15 - 期刊:
- 影响因子:9.9
- 作者:
Du, Shan;Zhang, Jin;Wang, Xun G. - 通讯作者:
Wang, Xun G.
Spatiotemporal gait parameter fluctuations in older adults affected by mild cognitive impairment: comparisons among three cognitive dual-task tests.
- DOI:
10.1186/s12877-023-04281-7 - 发表时间:
2023-09-27 - 期刊:
- 影响因子:4.1
- 作者:
Du, Shan;Ma, Xiaojuan;Wang, Jiachen;Mi, Yan;Zhang, Jie;Du, Chengxue;Li, Xiaobo;Tan, Huihui;Liang, Chen;Yang, Tian;Shi, Wenzhen;Zhang, Gejuan;Tian, Ye - 通讯作者:
Tian, Ye
Clinical Study of Anti-PD-1 Immunotherapy Combined with Gemcitabine Chemotherapy in Multiline Treatment of Advanced Pancreatic Cancer.
- DOI:
10.1155/2022/4070060 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Liu, Yanfeng;Li, Yanchuan;Du, Shan;Fan, Li;Wang, Junyan - 通讯作者:
Wang, Junyan
Adverse drug events in Chinese elder inpatients: a retrospective review for evaluating the efficiency of the Global Trigger Tool.
- DOI:
10.3389/fmed.2023.1232334 - 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
Yu, Nan;Wu, Liuyun;Yin, Qinan;Du, Shan;Liu, Xinxia;Wu, Shan;Tong, Rongsheng;Yan, Junfeng;Bian, Yuan - 通讯作者:
Bian, Yuan
Identification of potential leukocyte antigen-related protein (PTP-LAR) inhibitors through 3D QSAR pharmacophore-based virtual screening and molecular dynamics simulation
通过基于 3D QSAR 药效团的虚拟筛选和分子动力学模拟鉴定潜在的白细胞抗原相关蛋白 (PTP-LAR) 抑制剂
- DOI:
10.1080/07391102.2019.1676825 - 发表时间:
2019-10-16 - 期刊:
- 影响因子:4.4
- 作者:
Du, Shan;Yang, Bing;Wang, Run-Ling - 通讯作者:
Wang, Run-Ling
Du, Shan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Du, Shan', 18)}}的其他基金
Next Generation Video Surveillance for Environmental Monitoring and Protection
用于环境监测和保护的下一代视频监控
- 批准号:
DGECR-2022-00367 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Launch Supplement
Face identification in realtime video surveillance
实时视频监控中的人脸识别
- 批准号:
386024-2009 - 财政年份:2012
- 资助金额:
$ 2.48万 - 项目类别:
Industrial Research Fellowships
Face identification in realtime video surveillance
实时视频监控中的人脸识别
- 批准号:
386024-2009 - 财政年份:2011
- 资助金额:
$ 2.48万 - 项目类别:
Industrial Research Fellowships
Face identification in realtime video surveillance
实时视频监控中的人脸识别
- 批准号:
386024-2009 - 财政年份:2009
- 资助金额:
$ 2.48万 - 项目类别:
Industrial Research Fellowships
Digital video object tracking
数字视频对象跟踪
- 批准号:
278728-2003 - 财政年份:2005
- 资助金额:
$ 2.48万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Digital video object tracking
数字视频对象跟踪
- 批准号:
278728-2003 - 财政年份:2004
- 资助金额:
$ 2.48万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Digital video object tracking
数字视频对象跟踪
- 批准号:
278728-2003 - 财政年份:2003
- 资助金额:
$ 2.48万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
Next Generation Packet Video Networking with Applied AI
具有应用人工智能的下一代分组视频网络
- 批准号:
RGPIN-2020-06273 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
RINGS: Object-Oriented Video Analytics for Next-Generation Mobile Environments
RINGS:下一代移动环境的面向对象视频分析
- 批准号:
2147909 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Continuing Grant
New Signal Processing Techniques for Next Generation Video Compression
下一代视频压缩的新信号处理技术
- 批准号:
RGPIN-2019-05388 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Next Generation Video Surveillance for Environmental Monitoring and Protection
用于环境监测和保护的下一代视频监控
- 批准号:
DGECR-2022-00367 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Launch Supplement
New Signal Processing Techniques for Next Generation Video Compression
下一代视频压缩的新信号处理技术
- 批准号:
RGPIN-2019-05388 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Next Generation Packet Video Networking with Applied AI
具有应用人工智能的下一代分组视频网络
- 批准号:
RGPIN-2020-06273 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: CNS Core: Medium: Panoptes: Next Generation Multi-Perspective Video Delivery at Internet Scale
合作研究:CNS 核心:媒介:Panoptes:互联网规模的下一代多视角视频传输
- 批准号:
1956018 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Continuing Grant
New Signal Processing Techniques for Next Generation Video Compression
下一代视频压缩的新信号处理技术
- 批准号:
RGPIN-2019-05388 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Next Generation Packet Video Networking with Applied AI
具有应用人工智能的下一代分组视频网络
- 批准号:
RGPIN-2020-06273 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: CNS Core: Medium: Panoptes: Next Generation Multi-Perspective Video Delivery at Internet Scale
合作研究:CNS 核心:媒介:Panoptes:互联网规模的下一代多视角视频传输
- 批准号:
1956190 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Continuing Grant