New Signal Processing Techniques for Next Generation Video Compression

下一代视频压缩的新信号处理技术

基本信息

  • 批准号:
    RGPIN-2019-05388
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Video compression (VC) is one of the key technologies that enables streaming, downloading, and broadcasting of video content over wireless networks. The important purpose of VC is to minimize the amount of data required to capture the content, without compromising the visual quality. Given the sheer amounts of data associated with most video content, it is practically impossible to send high quality live video over even the fastest wireless link, without first applying very efficient compression to reduce the required network bandwidth. While the capacity of wireless networks will continue to grow, so will the raw bitrates of emerging applications such as 8K HD video, high dynamic range (HDR) and wide color gamut (WCG) video etc. Cisco Systems Inc. estimates that, by 2021, over 80% of the Internet traffic would be video. Many in the industry are of the opinion that substantial improvements in video compression efficiency can no longer be achieved without fundamental changes to the conventional motion compensated transform coding (MCTC) framework on which the current VC technology is built. This research program will investigate fundamentally new disruptive VC technologies which can help go beyond the performance limits of the MCTC. The proposed research departs from the established practice in two major ways with the potential to achieve order-of-magnitude improvements in video compression efficiency. First,  it aims to forgo the conventional approach of putting together a series of processing operations in a heuristic manner to implement complex functions such as motion compensation (MC) and rate-distortion optimization (RDO).  Instead, the focus will be on a holistic approach where such functions are "machine learned" from real video data. Recently, a  number of difficult problems in computer vision  have been solved with machine learning based on deep convolution neural-networks (DCNN).  Given that video compression can also be viewed as a computer vision problem,  this research will pursue the novel idea of using DCNNs for MC and RDO . The second major difference of proposed research is the use of bio-inspired vision models for performance optimization. Examples are retinal model for quantifying the distortion between original and coded video and models for information coding in human eye. These models can be used to heavily compress video data with a negligible effect on the quality as perceived by a human viewer. This is in contrast to the current practice of  compressing video based on  pixel-level differences which results in disturbing visible artifacts in compressed video. It is anticipated that this research will introduce novel frameworks for MC and RDO  which can help develop new video compression algorithms achieving a very high bandwidth efficiency. Being mainly carried out by graduate students, this research will also play an important role in the training of highly qualified personnel (HQP) in communication engineering.
视频压缩(VC)是实现视频内容在无线网络上的流式传输、下载和广播的关键技术之一。VC的重要目的是最大限度地减少捕获内容所需的数据量,而不影响视觉质量。考虑到与大多数视频内容相关联的数据量庞大,如果不首先应用非常有效的压缩来减少所需的网络带宽,即使是最快的无线链路也几乎不可能发送高质量的实时视频。虽然无线网络的容量将继续增长,但8K高清视频、高动态范围(HDR)和宽色域(WCG)视频等新兴应用的原始比特率也将继续增长。到2021年,超过80%的互联网流量将是视频。许多业内人士认为,如果不对当前VC技术所基于的传统运动补偿变换编码(MCTC)框架进行根本改变,就不能再实现视频压缩效率的实质性改进。这项研究计划将从根本上研究新的颠覆性VC技术,这些技术可以帮助超越MCTC的性能限制。拟议的研究在两个主要方面偏离了既定实践,有可能实现视频压缩效率的数量级改进。首先,它的目的是放弃传统的方法,把一系列的处理操作,以启发式的方式来实现复杂的功能,如运动补偿(MC)和率失真优化(RDO)。相反,重点将是一个整体的方法,这些功能是“机器学习”从真实的视频数据。近年来,基于深度卷积神经网络(DCNN)的机器学习方法已经解决了计算机视觉领域的一些难题。鉴于视频压缩也可以被看作是一个计算机视觉问题,本研究将探索将DCNN用于MC和RDO的新想法。拟议研究的第二个主要区别是使用生物启发的视觉模型进行性能优化。实例是用于量化原始视频和编码视频之间的失真的视网膜模型和用于人眼中的信息编码的模型。这些模型可用于大量压缩视频数据,对人类观看者所感知的质量的影响可忽略不计。这与基于像素级差异压缩视频的当前实践形成对比,像素级差异导致压缩视频中的干扰可见伪影。预计这项研究将引入新的框架MC和RDO,可以帮助开发新的视频压缩算法,实现非常高的带宽效率。本研究以研究生为主,对通信工程专业高素质人才的培养具有重要意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yahampath, Pradeepa其他文献

Yahampath, Pradeepa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yahampath, Pradeepa', 18)}}的其他基金

New Signal Processing Techniques for Next Generation Video Compression
下一代视频压缩的新信号处理技术
  • 批准号:
    RGPIN-2019-05388
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
New Signal Processing Techniques for Next Generation Video Compression
下一代视频压缩的新信号处理技术
  • 批准号:
    RGPIN-2019-05388
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
New Signal Processing Techniques for Next Generation Video Compression
下一代视频压缩的新信号处理技术
  • 批准号:
    RGPIN-2019-05388
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Development of multi-thread data-network and power-system co-simulation tools for PSCAD/EMTDC
PSCAD/EMTDC 多线程数据网络和电力系统联合仿真工具的开发
  • 批准号:
    471098-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Plus Grants Program
Simulation of data networks in PSCAD/EMTDC
PSCAD/EMTDC 中的数据网络仿真
  • 批准号:
    451274-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Distributed coding and signal processing for wireless sensor networks and ad-hoc networks
无线传感器网络和自组织网络的分布式编码和信号处理
  • 批准号:
    261358-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Distributed coding and signal processing for wireless sensor networks and ad-hoc networks
无线传感器网络和自组织网络的分布式编码和信号处理
  • 批准号:
    261358-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Distributed coding and signal processing for wireless sensor networks and ad-hoc networks
无线传感器网络和自组织网络的分布式编码和信号处理
  • 批准号:
    261358-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Distributed coding and signal processing for wireless sensor networks and ad-hoc networks
无线传感器网络和自组织网络的分布式编码和信号处理
  • 批准号:
    261358-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Distributed coding and signal processing for wireless sensor networks and ad-hoc networks
无线传感器网络和自组织网络的分布式编码和信号处理
  • 批准号:
    261358-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

一种检测结核分枝杆菌抗原标志物的方法学研究——基于signal-on型电化学适体检测体系的构建及应用
  • 批准号:
    81601856
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
  • 批准号:
    81301123
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

New Signal Design and Processing for Future Vehicular Communications (DRIVE)
未来车辆通信 (DRIVE) 的新信号设计和处理
  • 批准号:
    EP/X035352/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
Rhythmic and arrhythmic brain activity: from advanced signal processing tools to new electromagnetic neuroimaging methods
节律和心律失常的大脑活动:从先进的信号处理工具到新的电磁神经成像方法
  • 批准号:
    RGPIN-2017-05960
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
New Signal Processing Techniques for Next Generation Video Compression
下一代视频压缩的新信号处理技术
  • 批准号:
    RGPIN-2019-05388
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
New Signal Processing Techniques for Next Generation Video Compression
下一代视频压缩的新信号处理技术
  • 批准号:
    RGPIN-2019-05388
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
New signal processing, circuits and materials for robust and affordable capacitively-coupled electrocardiography
新的信号处理、电路和材料,用于稳定且经济实惠的电容耦合心电图
  • 批准号:
    514369-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Collaborative Research and Development Grants
Rhythmic and arrhythmic brain activity: from advanced signal processing tools to new electromagnetic neuroimaging methods
节律和心律失常的大脑活动:从先进的信号处理工具到新的电磁神经成像方法
  • 批准号:
    RGPIN-2017-05960
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Rhythmic and arrhythmic brain activity: from advanced signal processing tools to new electromagnetic neuroimaging methods
节律和心律失常的大脑活动:从先进的信号处理工具到新的电磁神经成像方法
  • 批准号:
    RGPIN-2017-05960
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
New Signal Processing Techniques for Next Generation Video Compression
下一代视频压缩的新信号处理技术
  • 批准号:
    RGPIN-2019-05388
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Hypertracking and hyperrejectoin - New developments on control and signal processing in super high frequencies
超追踪和超拒绝——超高频控制和信号处理的新进展
  • 批准号:
    19H02161
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New Methods in Sparse Sensing and Graphical Signal Processing
稀疏传感和图形信号处理的新方法
  • 批准号:
    502892-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了