Computational Cosmology and Artificial Intelligence
计算宇宙学和人工智能
基本信息
- 批准号:CRC-2021-00334
- 负责人:
- 金额:$ 6.92万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Canada Research Chairs
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the past few decades, the standard model of cosmology has had tremendous success at explaining a vast array of observations spanning an immense range of scales both in space and in time. However, the origin and nature of all 3 key components of this model remain, to this day, unknown. The physical nature of the field(s) responsible for the period of primordial inflation in the early Universe, the source of the apparent accelerated expansion of the Universe (dark energy), and the particle(s) that make up dark matter are the biggest outstanding mysteries of modern cosmology. Their understanding constitutes the main goal of modern cosmology, and will most likely cause a revolution in fundamental physics. In the next decade, a large number of new observatories and experiments will attempt to shed light on these mind-boggling questions. However, while the data cosmologists expect will be of unprecedented quality, the volumes of these new data will pose serious challenges when it comes to their analysis through traditional statistical methods. Artificial intelligence and machine learning will offer alternative analysis methods that promise great increase not only in speed, but also, in some cases, in accuracy.The goal of the proposed Tier 2 Canada Research Chair program is to lead cutting-edge observational and theoretical research on the use of machine learning for the simulation and analysis of cosmological data with the aim of enabling rapid, precise, and accurate analysis of upcoming observations from these large sky surveys, paving new ways for major breakthrough discoveries in the field of astrophysics.More specifically, the research program will focus on two central questions:1. Measuring the Hubble constant with strong gravitational lensing and machine learning, with the hope of solving an emerging crisis in cosmology and potentially uncovering new physics.2. Reconstructing the initial conditions of the Universe with survey data and artificial intelligence, creating a map of the initial 3-dimensional Universe only 400 000 years after its birth. This will open new avenues for answering questions about the nature of inflation and probing fundamental properties of dark energy.
在过去的几十年里,宇宙学的标准模型在解释跨越空间和时间尺度的大量观测方面取得了巨大的成功。然而,这一模式的所有3个关键组成部分的起源和性质至今仍然未知。导致早期宇宙原始膨胀时期的场的物理性质,宇宙明显加速膨胀的来源(暗能量),以及构成暗物质的粒子是现代宇宙学最大的未解之谜。对它们的理解构成了现代宇宙学的主要目标,并很可能引发基础物理学的革命。在接下来的十年里,大量新的观测站和实验将试图阐明这些令人难以置信的问题。然而,尽管宇宙学家预计这些数据将具有前所未有的质量,但这些新数据的数量将对通过传统统计方法进行分析构成严重挑战。人工智能和机器学习将提供替代分析方法,不仅可以大大提高速度,而且在某些情况下还可以提高准确性。拟议的Tier 2 Canada Research Chair计划的目标是领导关于使用机器学习模拟和分析宇宙学数据的前沿观测和理论研究,旨在实现快速,精确,并对这些大型巡天观测结果进行精确分析,为天体物理学领域的重大突破性发现铺平新的道路。利用强引力透镜和机器学习测量哈勃常数,希望解决宇宙学中出现的危机,并可能发现新的物理学。利用调查数据和人工智能重建宇宙的初始条件,创建一个诞生后仅40万年的初始三维宇宙的地图。这将为回答有关暴胀本质的问题和探索暗能量的基本性质开辟新的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PerreaultLevasseur, Laurence其他文献
PerreaultLevasseur, Laurence的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PerreaultLevasseur, Laurence', 18)}}的其他基金
A New, Data-Driven Era for Precision Cosmology: Measuring the Expansion Rate of the Universe with Machine Learning.
精确宇宙学的数据驱动新时代:通过机器学习测量宇宙的膨胀率。
- 批准号:
RGPIN-2020-05102 - 财政年份:2022
- 资助金额:
$ 6.92万 - 项目类别:
Discovery Grants Program - Individual
A New, Data-Driven Era for Precision Cosmology: Measuring the Expansion Rate of the Universe with Machine Learning.
精确宇宙学的数据驱动新时代:通过机器学习测量宇宙的膨胀率。
- 批准号:
RGPIN-2020-05102 - 财政年份:2021
- 资助金额:
$ 6.92万 - 项目类别:
Discovery Grants Program - Individual
A New, Data-Driven Era for Precision Cosmology: Measuring the Expansion Rate of the Universe with Machine Learning.
精确宇宙学的数据驱动新时代:通过机器学习测量宇宙的膨胀率。
- 批准号:
RGPIN-2020-05102 - 财政年份:2020
- 资助金额:
$ 6.92万 - 项目类别:
Discovery Grants Program - Individual
A New, Data-Driven Era for Precision Cosmology: Measuring the Expansion Rate of the Universe with Machine Learning.
精确宇宙学的数据驱动新时代:通过机器学习测量宇宙的膨胀率。
- 批准号:
DGECR-2020-00211 - 财政年份:2020
- 资助金额:
$ 6.92万 - 项目类别:
Discovery Launch Supplement
Singularity Resolution and Origin of Cosmological Structures from Superstring Theory
超弦理论的奇点解析和宇宙结构起源
- 批准号:
409034-2011 - 财政年份:2014
- 资助金额:
$ 6.92万 - 项目类别:
Postgraduate Scholarships - Doctoral
Singularity Resolution and Origin of Cosmological Structures from Superstring Theory
超弦理论的奇点解析和宇宙结构起源
- 批准号:
409034-2011 - 财政年份:2013
- 资助金额:
$ 6.92万 - 项目类别:
Postgraduate Scholarships - Doctoral
62e Lindau Conference from July 1st to July 6, 2012 in Germany
62e 2012年7月1日至7月6日在德国举行的林道会议
- 批准号:
433926-2012 - 财政年份:2012
- 资助金额:
$ 6.92万 - 项目类别:
Miscellaneous Grants
Singularity Resolution and Origin of Cosmological Structures from Superstring Theory
超弦理论的奇点解析和宇宙结构起源
- 批准号:
409034-2011 - 财政年份:2012
- 资助金额:
$ 6.92万 - 项目类别:
Postgraduate Scholarships - Doctoral
Singularity Resolution and Origin of Cosmological Structures from Superstring Theory
超弦理论的奇点解析和宇宙结构起源
- 批准号:
409034-2011 - 财政年份:2011
- 资助金额:
$ 6.92万 - 项目类别:
Postgraduate Scholarships - Doctoral
String gas cosmology: study of the origin of cosmological fluctuations
弦气体宇宙学:宇宙涨落起源的研究
- 批准号:
378475-2009 - 财政年份:2009
- 资助金额:
$ 6.92万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
相似海外基金
Exploring dark energy inhomogeneities beyond the standard cosmology
探索标准宇宙学之外的暗能量不均匀性
- 批准号:
24K17041 - 财政年份:2024
- 资助金额:
$ 6.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Hawking - How supermassive black holes shape our Universe: at the interface of galaxy formation, cosmology and multi-messenger astronomy
霍金 - 超大质量黑洞如何塑造我们的宇宙:在星系形成、宇宙学和多信使天文学的交汇处
- 批准号:
EP/X04257X/1 - 财政年份:2024
- 资助金额:
$ 6.92万 - 项目类别:
Fellowship
Enabling Moon-based Radio Cosmology - CosmoCube (24-25)
实现基于月球的射电宇宙学 - CosmoCube (24-25)
- 批准号:
ST/Z000556/1 - 财政年份:2024
- 资助金额:
$ 6.92万 - 项目类别:
Research Grant
Clocks and singularities in quantum gravity and quantum cosmology
量子引力和量子宇宙学中的时钟和奇点
- 批准号:
2907441 - 财政年份:2024
- 资助金额:
$ 6.92万 - 项目类别:
Studentship
Synergy between future 21-cm experiments and physical cosmology
未来 21 厘米实验与物理宇宙学之间的协同作用
- 批准号:
DE240101129 - 财政年份:2024
- 资助金额:
$ 6.92万 - 项目类别:
Discovery Early Career Researcher Award
Sharpening our view of Cluster Cosmology
加深我们对星团宇宙学的看法
- 批准号:
2307546 - 财政年份:2023
- 资助金额:
$ 6.92万 - 项目类别:
Standard Grant
Precision Cosmology and Astrophysics with CMB Secondaries
使用 CMB 二次星进行精密宇宙学和天体物理学
- 批准号:
2307727 - 财政年份:2023
- 资助金额:
$ 6.92万 - 项目类别:
Standard Grant
Enabling KARMMA as a Tool of Precision Cosmology
让 KARMMA 成为精密宇宙学的工具
- 批准号:
2306667 - 财政年份:2023
- 资助金额:
$ 6.92万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: AAPF: Near-field Cosmology with 6D Stellar Streams
博士后奖学金:AAPF:6D 恒星流的近场宇宙学
- 批准号:
2303841 - 财政年份:2023
- 资助金额:
$ 6.92万 - 项目类别:
Fellowship Award
Scale invariance: A new paradigm for particle physics and cosmology
尺度不变性:粒子物理学和宇宙学的新范式
- 批准号:
DP220101721 - 财政年份:2023
- 资助金额:
$ 6.92万 - 项目类别:
Discovery Projects