A New, Data-Driven Era for Precision Cosmology: Measuring the Expansion Rate of the Universe with Machine Learning.

精确宇宙学的数据驱动新时代:通过机器学习测量宇宙的膨胀率。

基本信息

  • 批准号:
    RGPIN-2020-05102
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

With a new generation of sky surveys coming online in the next decade, cosmology is about to enter a new era of big data that is bound to revolutionize this field. These new experiments will provide a wealth of data to answer fundamental questions such as the nature of dark matter and dark energy, but are also opening a new window to solve an emerging crisis in cosmology: the measurement of the Hubble constant, H0, which is now at an almost 4s tension between early (the cosmic microwave background) and late (type 1a supernovae) universe probes. If confirmed, this disagreement would imply new physics beyond the standard model of cosmology, which renders making a precise and accurate determination of this parameter one of the most crucial goals of modern cosmology experiments. My research program will use the power of advanced machine learning methods to unlock the power of the rich datasets from this new generation of observatories to measure H0 using images of a new population of strongly lensed quasars, potentially resolving this crisis. This will be achieved through the development of sophisticated and innovative deep learning pipelines and includes the following three short-term objectives: -The production of fast, inexpensive, and extremely realistic simulations of strongly lensed quasar observations; -The development of a novel machine learning analysis pipeline to obtain lens models and time delays from observations in a completely automated and accurate manner; -The development of a likelihood-free Bayesian inference framework to estimate calibrated uncertainties of predicted parameter values. This will integrate our best understanding of lensing, quasar physics, and cosmology in a self-consistent manner that is not computationally tractable with traditional methods, potentially increasing the number of useable lensing systems for this science in upcoming surveys by an order of magnitude. It will enable us to fully exploit the true potential of the upcoming data from the new generation sky surveys. This grant will provide training for undergraduate, M.Sc., and Ph.D. students in the emerging field of machine learning cosmology. In the era of big data, their expertise and work funded by this Discovery Grant will provide critical resources and ancillary science products for use by the global lensing community, and the tools and products developed will be made open source for the use of the broader community.
随着新一代天文测量在未来十年上线,宇宙学即将进入大数据的新时代,这势必会给这一领域带来革命性的变化。这些新的实验将提供大量的数据来回答诸如暗物质和暗能量的本质等基本问题,但也为解决宇宙学中一个新出现的危机打开了一个新的窗口:哈勃常数H0的测量,它现在处于早期(宇宙微波背景)和晚期(1a型超新星)宇宙探测器之间几乎4s的张力。如果得到证实,这种分歧将意味着超越标准宇宙学模型的新物理学,这使得精确和准确地确定这一参数成为现代宇宙学实验最关键的目标之一。我的研究计划将使用先进机器学习方法的力量,释放来自新一代天文台的丰富数据集的力量,使用新一批强透镜类星体的图像来测量H0,潜在地解决这场危机。这将通过开发复杂和创新的深度学习管道来实现,包括以下三个短期目标:-对强透镜类星体观测进行快速、廉价和极其逼真的模拟;-开发一种新型的机器学习分析管道,以完全自动和准确的方式从观测中获取透镜模型和时间延迟;-开发一个无似然贝叶斯推理框架,以估计预测参数值的校准不确定度。这将以一种自洽的方式整合我们对透镜、类星体物理和宇宙学的最佳理解,这是传统方法在计算上无法处理的,潜在地将在即将到来的调查中增加这门科学的可用透镜系统的数量一个数量级。它将使我们能够充分挖掘即将到来的新一代天文测量数据的真正潜力。这笔资金将在新兴的机器学习宇宙学领域为本科生、理科硕士和博士生提供培训。在大数据时代,他们的专业知识和由这笔发现基金资助的工作将提供关键资源和辅助科学产品供全球透镜社区使用,开发的工具和产品将开源供更广泛的社区使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PerreaultLevasseur, Laurence其他文献

PerreaultLevasseur, Laurence的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PerreaultLevasseur, Laurence', 18)}}的其他基金

Computational Cosmology and Artificial Intelligence
计算宇宙学和人工智能
  • 批准号:
    CRC-2021-00334
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Canada Research Chairs
A New, Data-Driven Era for Precision Cosmology: Measuring the Expansion Rate of the Universe with Machine Learning.
精确宇宙学的数据驱动新时代:通过机器学习测量宇宙的膨胀率。
  • 批准号:
    RGPIN-2020-05102
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
A New, Data-Driven Era for Precision Cosmology: Measuring the Expansion Rate of the Universe with Machine Learning.
精确宇宙学的数据驱动新时代:通过机器学习测量宇宙的膨胀率。
  • 批准号:
    RGPIN-2020-05102
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
A New, Data-Driven Era for Precision Cosmology: Measuring the Expansion Rate of the Universe with Machine Learning.
精确宇宙学的数据驱动新时代:通过机器学习测量宇宙的膨胀率。
  • 批准号:
    DGECR-2020-00211
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Launch Supplement
Singularity Resolution and Origin of Cosmological Structures from Superstring Theory
超弦理论的奇点解析和宇宙结构起源
  • 批准号:
    409034-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Singularity Resolution and Origin of Cosmological Structures from Superstring Theory
超弦理论的奇点解析和宇宙结构起源
  • 批准号:
    409034-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
62e Lindau Conference from July 1st to July 6, 2012 in Germany
62e 2012年7月1日至7月6日在德国举行的林道会议
  • 批准号:
    433926-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Miscellaneous Grants
Singularity Resolution and Origin of Cosmological Structures from Superstring Theory
超弦理论的奇点解析和宇宙结构起源
  • 批准号:
    409034-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Singularity Resolution and Origin of Cosmological Structures from Superstring Theory
超弦理论的奇点解析和宇宙结构起源
  • 批准号:
    409034-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
String gas cosmology: study of the origin of cosmological fluctuations
弦气体宇宙学:宇宙涨落起源的研究
  • 批准号:
    378475-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Data Driven Discovery of New Catalysts for Asymmetric Synthesis
数据驱动的不对称合成新催化剂的发现
  • 批准号:
    DP240100102
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Projects
A new data-driven approach to bring humanity into virtual worlds with computer vision
一种新的数据驱动方法,通过计算机视觉将人类带入虚拟世界
  • 批准号:
    23K28129
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Enabling net zero retrofit: using AI to generate new data driven insights and support better decision making
实现净零改造:使用人工智能生成新的数据驱动的见解并支持更好的决策
  • 批准号:
    10114530
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    SME Support
Elucidating the Role of Endothelial Dysfunction in Alzheimer Disease: Towards A New Data-Driven Disease Model
阐明内皮功能障碍在阿尔茨海默病中的作用:建立新的数据驱动疾病模型
  • 批准号:
    10737969
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
NEW AND SCALABLE PARADIGMS FOR DATA-DRIVEN MODEL PREDICTIVE CONTROL
数据驱动模型预测控制的新的、可扩展的范式
  • 批准号:
    2315963
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
A new data-driven approach to bring humanity into virtual worlds with computer vision
一种新的数据驱动方法,通过计算机视觉将人类带入虚拟世界
  • 批准号:
    23H03439
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A study of a new method for data-driven modal analysis of power systems with power electronics distributed generators as the main power sources
以电力电子分布式发电机为主要电源的电力系统数据驱动模态分析新方法研究
  • 批准号:
    22K14246
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Creating equal opportunities, needed by a new wave of entrepreneurs, through data-driven automation innovation
通过数据驱动的自动化创新创造新一波企业家所需的平等机会
  • 批准号:
    830290
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Innovation Loans
Automation of Data-Driven Multidimensional Materials Design and Acceleration of Synthesis for New Materials Discovery
数据驱动的多维材料设计自动化和新材料发现合成加速
  • 批准号:
    21H01375
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A New, Data-Driven Era for Precision Cosmology: Measuring the Expansion Rate of the Universe with Machine Learning.
精确宇宙学的数据驱动新时代:通过机器学习测量宇宙的膨胀率。
  • 批准号:
    RGPIN-2020-05102
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了