New paradigms in seismic data preconditioning and imaging via Deep Neural Networks

通过深度神经网络进行地震数据预处理和成像的新范例

基本信息

  • 批准号:
    RGPIN-2022-03301
  • 负责人:
  • 金额:
    $ 5.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The main goal of geophysical methods is to estimate images of the interior of the earth. These images are central information for exploring resources and understanding processes that occur in the subsurface. For instance, in applied seismology, an experiment is carried out where seismic waves are injected into the subsurface. Geological interfaces reflect seismic waves and propagate them back to the surface. Sensors on the earth's surface record these reflected waves. The data gathered by sensors are processed via computational methods that turn recorded signals into images of the earth's interior. Computational approaches to map seismic data into subsurface images are categorized into two main groups: preconditioning and inversion methods. Preconditioning and inversion require solving numerical problems with additional relevant prior information. This prior information is traditionally provided via constraints that ensure solutions with a given character (e.g. smoothness). In recent years, the field of machine learning has provided technologies that permit learning the aforementioned prior information and, by this means, finding efficient and accurate answers to many numerical problems that involve processing and inversion of data. Of particular relevance to the proposed plan are Deep Neural Networks. These are robust machine learning tools with incredible performance in image classification and segmentation tasks. Deep Neural Networks allow performing complex tasks such as those required for face recognition, autonomous driving, and diagnostic medical imaging. The proposed research plan will investigate different means to incorporate Deep Neural Networks into the solution of data preconditioning and inverse problems that arise in applied seismology. We will explore regularization methods based on Deep Neural Networks to find fast and stable solutions to seismic inverse problems. Similarly, we also plan to investigate signal processing methods based on Deep Neural Networks and use these methods for preconditioning tasks such as seismic signal enhancement and seismic data reconstruction. I will be training 3 Ph.D. students, 3 MSc students, 3 PDFs, and 5 undergraduate research assistants in the foundations of seismic data processing, seismic imaging, and machine learning. This reseach program will increase scientific knowledge on the application of machine learning in geosciences, particularly in the development of seismic data preconditioning and imaging methods. I expect students trained via the proposed plan to pursue careers in either academia or industry and to gain sufficiently flexible training to apply their skills to any industry requiring tools to acquire, enhance and extract valuable information from large datasets.
地球物理方法的主要目标是估计地球内部的图像。这些图像是探索资源和了解发生在地下的过程的核心信息。例如,在应用地震学中,将地震波注入地下进行实验。地质界面反射地震波并将其传播回地表。地球表面的传感器记录下这些反射波。传感器收集的数据通过计算方法进行处理,将记录的信号转化为地球内部的图像。将地震数据映射成地下图像的计算方法主要分为两大类:预处理方法和反演方法。预处理和反演需要求解具有附加相关先验信息的数值问题。这种先验信息通常是通过约束来提供的,这些约束确保解决方案具有给定的特征(例如平滑性)。近年来,机器学习领域提供了允许学习上述先验信息的技术,并通过这种方式,为涉及数据处理和反演的许多数值问题找到有效和准确的答案。与提出的计划特别相关的是深度神经网络。这些都是强大的机器学习工具,在图像分类和分割任务中具有令人难以置信的性能。深度神经网络允许执行复杂的任务,如面部识别、自动驾驶和诊断医学成像。提出的研究计划将研究将深度神经网络纳入应用地震学中出现的数据预处理和反问题的解决方案的不同方法。我们将探索基于深度神经网络的正则化方法来寻找快速稳定的地震反演问题的解。同样,我们还计划研究基于深度神经网络的信号处理方法,并将这些方法用于预处理任务,如地震信号增强和地震数据重建。我将在地震数据处理、地震成像和机器学习的基础方面培养3名博士生、3名硕士、3名pdf和5名本科生研究助理。这个研究项目将增加机器学习在地球科学中的应用,特别是在地震数据预处理和成像方法的发展方面的科学知识。我希望通过拟议计划培训的学生能够在学术界或工业界从事职业,并获得足够灵活的培训,将他们的技能应用于任何需要工具来获取、增强和从大型数据集中提取有价值信息的行业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sacchi, Mauricio其他文献

Simultaneous recovery of origin time, hypocentre location and seismic moment tensor using sparse representation theory
  • DOI:
    10.1111/j.1365-246x.2011.05323.x
  • 发表时间:
    2012-03-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Rodriguez, Ismael Vera;Sacchi, Mauricio;Gu, Yu J.
  • 通讯作者:
    Gu, Yu J.
Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis
  • DOI:
    10.1190/1.3552706
  • 发表时间:
    2011-05-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Oropeza, Vicente;Sacchi, Mauricio
  • 通讯作者:
    Sacchi, Mauricio
Denoising seismic data using the nonlocal means algorithm
  • DOI:
    10.1190/geo2011-0235.1
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Bonar, David;Sacchi, Mauricio
  • 通讯作者:
    Sacchi, Mauricio
Multidimensional de-aliased Cadzow reconstruction of seismic records
  • DOI:
    10.1190/geo2012-0200.1
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Naghizadeh, Mostafa;Sacchi, Mauricio
  • 通讯作者:
    Sacchi, Mauricio

Sacchi, Mauricio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sacchi, Mauricio', 18)}}的其他基金

Studies in elastic wave processing and inversion
弹性波处理与反演研究
  • 批准号:
    RGPIN-2016-04600
  • 财政年份:
    2021
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual
Studies in elastic wave processing and inversion
弹性波处理与反演研究
  • 批准号:
    RGPIN-2016-04600
  • 财政年份:
    2020
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual
Studies in elastic wave processing and inversion
弹性波处理与反演研究
  • 批准号:
    RGPIN-2016-04600
  • 财政年份:
    2019
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual
Studies in elastic wave processing and inversion
弹性波处理与反演研究
  • 批准号:
    RGPIN-2016-04600
  • 财政年份:
    2018
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual
Studies in elastic wave processing and inversion
弹性波处理与反演研究
  • 批准号:
    RGPIN-2016-04600
  • 财政年份:
    2017
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual
Studies in elastic wave processing and inversion
弹性波处理与反演研究
  • 批准号:
    RGPIN-2016-04600
  • 财政年份:
    2016
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual
Fundamental and applied studies in seismic data preconditioning and inversion
地震资料预处理与反演基础与应用研究
  • 批准号:
    203181-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual
Fundamental and applied studies in seismic data preconditioning and inversion
地震资料预处理与反演基础与应用研究
  • 批准号:
    203181-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual
Fundamental and applied studies in seismic data preconditioning and inversion
地震资料预处理与反演基础与应用研究
  • 批准号:
    203181-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual
Fundamental and applied studies in seismic data preconditioning and inversion
地震资料预处理与反演基础与应用研究
  • 批准号:
    203181-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Shifting paradigms to emerging toxins in freshwater cyanobacterial blooms
淡水蓝藻水华中新出现的毒素的范式转变
  • 批准号:
    10912318
  • 财政年份:
    2023
  • 资助金额:
    $ 5.46万
  • 项目类别:
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Standard Grant
A Multi-Centre Non-Inferiority Randomized Controlled Trial of STOPping Cardiac MEDications in Patients with Normalized Cancer Therapy Related Cardiac Dysfunction - The STOP-MED CTRCD Trial
癌症治疗正常化相关心脏功能障碍患者停止心脏药物治疗的多中心非劣效随机对照试验 - STOP-MED CTRCD 试验
  • 批准号:
    489331
  • 财政年份:
    2023
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
  • 批准号:
    10884567
  • 财政年份:
    2023
  • 资助金额:
    $ 5.46万
  • 项目类别:
Functional Characterization and Development of Therapeutic Paradigms for DNA Damage Repair (DDR)-deficient Lethal Prostate Cancer
DNA 损伤修复 (DDR) 缺陷的致死性前列腺癌的功能表征和治疗范例的开发
  • 批准号:
    10675929
  • 财政年份:
    2023
  • 资助金额:
    $ 5.46万
  • 项目类别:
The Cultural Roots of STEM: A Synthesis of Non-Western STEM Learning Paradigms
STEM 的文化根源:非西方 STEM 学习范式的综合
  • 批准号:
    2313979
  • 财政年份:
    2023
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Standard Grant
An International Comparative Study of the Formation and Transformation of Paradigms in the Sociological Research of Family
家庭社会学研究范式形成与转变的国际比较研究
  • 批准号:
    23K01785
  • 财政年份:
    2023
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Utility of adaptive design optimization for developing rapid and reliable behavioral paradigms for substance use disorders
利用自适应设计优化来开发快速可靠的药物滥用行为范例
  • 批准号:
    10637895
  • 财政年份:
    2023
  • 资助金额:
    $ 5.46万
  • 项目类别:
CAREER: Unifying Neuroscience and Biomechanics Paradigms for Modeling Brain and Muscle Responses to Mechanical Impacts
职业:统一神经科学和生物力学范式,模拟大脑和肌肉对机械冲击的反应
  • 批准号:
    2239110
  • 财政年份:
    2023
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Continuing Grant
IRES: International Paradigms for Managing Hydrologic Extremes in a Shifting Climate
IRES:气候变化中管理极端水文的国际范式
  • 批准号:
    2247036
  • 财政年份:
    2023
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了