Studying novel materials using synchrotron-based spectroscopy and density functional calculations

使用基于同步加速器的光谱和密度泛函计算研究新型材料

基本信息

  • 批准号:
    RGPIN-2020-04337
  • 负责人:
  • 金额:
    $ 4.44万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The outer and less strongly bound electrons of matter are responsible for most material properties including color, chemical bonding, atomic and electronic structure, magnetism, band gap, electrical and heat conductivity, and even super-conductivity. Having the means to measure, model, and understand the outer electrons of a material is the key to understanding and tailoring important physical properties. This research will employ synchrotron-based soft X-ray spectroscopy at the group's own endstation at the Canadian Light Source to answer key questions concerning the structure of new materials in three areas of focus: 1. The role of vacancies in spinelectronic and other materials for new storage devices and high performance computing: Vacancies are important in condensed matter physics but notoriously difficult to detect. We have pioneered a method that allows studying vacancies. We specifically study their role in new ferromagnetic semiconductors for applications that use the electron spin and charge to store information. If realized on a large scale, spintronics will revolutionize computing capabilities by allowing faster processing speed, higher storage density and less energy consumption. 2. New materials for LED lighting applications: We focus on the detailed characterization and development of the electronic structures of a series of next-generation, rare earth-doped, nitride phosphors. These narrow-band-emitting, high-efficiency phosphors have demonstrated outstanding potential for use in phosphor-converted light emitting diodes (pc-LEDs), a technology poised to replace traditional incandescent lights. They are expected to lead to an outstanding reduction of 15% in global energy consumption with substantially greater long-term reductions. This reduction in energy consumption will be driven by the development of new high-efficiency phosphors. 3. Low dimensional materials: The first goal of this project is to elucidate basic physical and electronic properties of one dimensional, linear carbon chains, as well as how the choice of substrate, carbon chain length and introduction of dopants affects the electronic properties. In the extension to two-dimensional materials, we will study single layered materials phosphorene and borophene in an attempt to establish freestanding monolayers that have unique properties in terms of strength and charge mobility that are of fundamental interest and applicable in many areas. Overall, the comparison of our synchrotron measurements with our state-of-the-art theoretical calculations will provide very detailed insight and facilitate the design of new materials with tailored electronic, optical, magnetic, and chemical properties for use in lighting applications with much less energy consumption and electronics applications for faster and more energy efficient computing allowing handling of larger data sets.
物质的外层电子和不太强的电子负责大多数材料的性质,包括颜色、化学键、原子和电子结构、磁性、带隙、导电性和热导性,甚至超导性。拥有测量、建模和了解材料外部电子的手段是了解和调整重要物理性质的关键。这项研究将在该小组自己位于加拿大光源的终端站使用基于同步加速器的软X射线光谱学,在三个重点领域回答有关新材料结构的关键问题:1.空位在自旋电子和其他材料中的作用,用于新的存储设备和高性能计算:空位在凝聚态物理中很重要,但出了名的难以检测。我们首创了一种可以研究职位空缺的方法。我们专门研究了它们在使用电子自旋和电荷存储信息的新型铁磁半导体中的作用。如果大规模实现,自旋电子学将允许更快的处理速度、更高的存储密度和更低的能源消耗,从而彻底改变计算能力。2.LED照明应用的新材料:我们重点研究了一系列新一代稀土掺杂氮化物荧光粉的电子结构的详细表征和发展。这些窄带发射、高效的荧光粉已显示出在荧光粉转换发光二极管(PC-LED)中的巨大潜力,这是一项有望取代传统白炽灯的技术。预计它们将使全球能源消耗显著减少15%,长期降幅要大得多。这种能源消耗的减少将受到新型高效荧光粉开发的推动。3.低维材料:本项目的第一个目标是阐明一维线性碳链的基本物理和电学性质,以及衬底的选择、碳链长度和掺杂剂的引入对电子性质的影响。在扩展到二维材料方面,我们将研究单层材料磷烯和硼烯,试图建立在强度和电荷迁移率方面具有独特性能的独立单层膜,这些特性是基本感兴趣的,并在许多领域适用。总体而言,将我们的同步加速器测量与最先进的理论计算进行比较,将提供非常详细的洞察力,并有助于设计具有定制的电子、光学、磁性和化学性质的新材料,用于能耗低得多的照明应用和电子应用,以实现更快、更节能的计算,从而允许处理更大的数据集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Moewes, Alexander其他文献

Electronic structure investigation of wide band gap semiconductors-Mg2PN3and Zn2PN3: experiment and theory
  • DOI:
    10.1088/1361-648x/ab8f8a
  • 发表时间:
    2020-09-23
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Al Fattah, Md Fahim;Amin, Muhammad Ruhul;Moewes, Alexander
  • 通讯作者:
    Moewes, Alexander
Direct Measurements of Energy Levels and Correlation with Thermal Quenching Behavior in Nitride Phosphors
  • DOI:
    10.1021/acs.chemmater.7b02974
  • 发表时间:
    2017-09-26
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Tolhurst, Thomas M.;Strobel, Philipp;Moewes, Alexander
  • 通讯作者:
    Moewes, Alexander
Band Gap Tuning in Poly(triazine imide), a Nonmetallic Photocatalyst
  • DOI:
    10.1021/jp4002059
  • 发表时间:
    2013-05-02
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    McDermott, Eamon J.;Wirnhier, Eva;Moewes, Alexander
  • 通讯作者:
    Moewes, Alexander
Linking the HOMO-LUMO gap to torsional disorder in P3HT/PCBM blends
将 HOMO-LUMO 间隙与 P3HT/PCBM 共混物中的扭转无序联系起来
  • DOI:
    10.1063/1.4936898
  • 发表时间:
    2015-12-14
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    McLeod, John A.;Pitman, Amy L.;Moewes, Alexander
  • 通讯作者:
    Moewes, Alexander
Contrasting 1D tunnel-structured and 2D layered polymorphs of V2O5: relating crystal structure and bonding to band gaps and electronic structure
  • DOI:
    10.1039/c6cp02096h
  • 发表时间:
    2016-06-21
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Tolhurst, Thomas M.;Leedahl, Brett;Moewes, Alexander
  • 通讯作者:
    Moewes, Alexander

Moewes, Alexander的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Moewes, Alexander', 18)}}的其他基金

Materials Science with Synchrotron Radiation
同步辐射材料科学
  • 批准号:
    CRC-2018-00014
  • 财政年份:
    2022
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Canada Research Chairs
Studying novel materials using synchrotron-based spectroscopy and density functional calculations
使用基于同步加速器的光谱和密度泛函计算研究新型材料
  • 批准号:
    RGPIN-2020-04337
  • 财政年份:
    2021
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Materials Science With Synchrotron Radiation
同步辐射材料科学
  • 批准号:
    CRC-2018-00014
  • 财政年份:
    2021
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Canada Research Chairs
Studying novel materials using synchrotron-based spectroscopy and density functional calculations
使用基于同步加速器的光谱和密度泛函计算研究新型材料
  • 批准号:
    RGPIN-2020-04337
  • 财政年份:
    2020
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Materials Science with Synchrotron Radiation
同步辐射材料科学
  • 批准号:
    CRC-2018-00014
  • 财政年份:
    2020
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Canada Research Chairs
Band gap and electronic structure of 2D-systems, spinelectronics and ultra-hard materials studied with synchrotron-based soft X-ray Spectroscopy and Density Functional Theory
使用基于同步加速器的软 X 射线光谱和密度泛函理论研究二维系统、自旋电子学和超硬材料的带隙和电子结构
  • 批准号:
    RGPIN-2015-05498
  • 财政年份:
    2019
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Materials Science with Synchrotron Radiation
同步辐射材料科学
  • 批准号:
    CRC-2018-00014
  • 财政年份:
    2019
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Canada Research Chairs
Materials Science using Synchrotron Radiation
使用同步辐射的材料科学
  • 批准号:
    1000225504-2011
  • 财政年份:
    2018
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Canada Research Chairs
Materials Science with Synchrotron Radiation
同步辐射材料科学
  • 批准号:
    CRC-2018-00014
  • 财政年份:
    2018
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Canada Research Chairs
Band gap and electronic structure of 2D-systems, spinelectronics and ultra-hard materials studied with synchrotron-based soft X-ray Spectroscopy and Density Functional Theory
使用基于同步加速器的软 X 射线光谱和密度泛函理论研究二维系统、自旋电子学和超硬材料的带隙和电子结构
  • 批准号:
    RGPIN-2015-05498
  • 财政年份:
    2018
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Enviro: a novel colouring solution to unlock sustainable lightweight advanced composite materials
Enviro:一种新颖的着色解决方案,可释放可持续的轻质先进复合材料
  • 批准号:
    10093708
  • 财政年份:
    2024
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Collaborative R&D
EAGER: IMPRESS-U: Quantum dynamics in novel chalcogenide materials and devices
EAGER:IMPRESS-U:新型硫族化物材料和器件中的量子动力学
  • 批准号:
    2403609
  • 财政年份:
    2024
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Standard Grant
CAREER: A Novel Electrically-assisted Multimaterial Printing Approach for Scalable Additive Manufacturing of Bioinspired Heterogeneous Materials Architectures
职业:一种新型电辅助多材料打印方法,用于仿生异质材料架构的可扩展增材制造
  • 批准号:
    2338752
  • 财政年份:
    2024
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Standard Grant
CoCoGel: Controlling Colloidal Gels for Novel Sustainable Materials
CoCoGel:控制新型可持续材料的胶体凝胶
  • 批准号:
    EP/Y03595X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Research Grant
Circularizing Squarate-Based Materials: Novel Dynamic Networks
圆形方形材料:新型动态网络
  • 批准号:
    2404144
  • 财政年份:
    2024
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Standard Grant
CAREER: Development of Novel High-Performance Carbon Sink Concrete Materials Using Sustainable Multifunctional Hybrid Additives
职业:使用可持续多功能混合添加剂开发新型高性能碳汇混凝土材料
  • 批准号:
    2335878
  • 财政年份:
    2024
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Standard Grant
fabrication of supersaturated solid solution thermoelectric materials utilizing novel spherical composite powder preparation technology and laser powder bed fusion
利用新型球形复合粉末制备技术和激光粉末床熔融制备过饱和固溶体热电材料
  • 批准号:
    23K13572
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of Mechanism of Phonon Thermal Conductivity Reduction by Orbital Fluctuation for Development of Novel Thermal Functional Materials
阐明轨道涨落降低声子导热率的机制,以开发新型热功能材料
  • 批准号:
    23KJ0893
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A Dual-Laser Additive Manufacturing System for Novel Materials (Green3D)
用于新型材料的双激光增材制造系统 (Green3D)
  • 批准号:
    EP/X041190/1
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了