Optomechanics in the microwave regime for quantum technologies and fundamental sciences

量子技术和基础科学微波领域的光力学

基本信息

  • 批准号:
    RGPIN-2022-04435
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Over the last two decades, quantum sciences and technologies have made incredible progress, evolving from fundamental studies in quantum physics to a cross-disciplinary research field. While historic experiments used single electrons or atoms/ions to demonstrate remarkable effects (e.g. particle-wave duality, entanglement), now a lot of efforts are focused on controlling the quantum properties of systems with increasing complexity. This approach is not only promising to further our understanding of quantum mechanics, but also enables the use of quantum states for technological applications such as sensing or the realisation of quantum networks. In this context, mechanical systems are particularly promising as they can be precisely engineered and provide an excellent interface between different electromagnetic modes. For quantum information processing, where information cannot be copied, this approach thus constitutes a promising candidate to transfer information between visible and microwave wavelengths through a mechanical mode. This operation, called quantum transduction, constitute a key technological element to realise networks capable of handling quantum information. Nevertheless, the interaction strengths between the three modes - microwave, visible and mechanical - are still too weak to process information contained in single photons. With this research we aim to push further the control of complex hybrid opto-electromechanical systems. To improve the electromechanical coupling (between microwave and mechanics), we recently demonstrated a novel approach where the mechanics modulates the inductance of the circuit, providing an improvement of more than an order of magnitude compared to capacitive coupling. Capitalising on the versatility of our approach, we will pursue two main objectives: (i) transducers and (ii) sensors. (i), we will develop quantum transducers based on inductive electromechanics, aiming to reach high single-photon efficiencies. This will enable the transfer of quantum information between distant quantum processors, a promising approach to improve the performances of quantum computer via distributed computing. (ii), we will also work on the use of electromechanical systems for inertial/acceleration sensing. Indeed, by achieving larger couplings information can be extracted faster while reducing the back-action induced by the measure. This approach is particularly promising to realise mechanical sensors operating at the fundamental limits allowed by the laws of quantum mechanics, providing a clear advantage over classical systems. Overall, with this Discovery program we aim to develop key technologies for quantum information processing as well as sensing, generating opportunities for the creation of Canadian start-up companies in a growing sector. Furthermore, the study of complex hybrid systems will also lead to interesting discoveries where quantum mechanics strongly influence the dynamics of mesoscopic objects.
在过去的二十年里,量子科学和技术取得了令人难以置信的进步,从量子物理学的基础研究发展到跨学科研究领域。虽然历史性的实验使用单个电子或原子/离子来证明显着的效应(例如粒子波二象性、纠缠),但现在很多努力都集中在控制日益复杂的系统的量子特性上。这种方法不仅有望进一步加深我们对量子力学的理解,而且还可以将量子态用于传感或量子网络实现等技术应用。在这种情况下,机械系统特别有前途,因为它们可以精确设计并在不同电磁模式之间提供良好的接口。对于信息无法复制的量子信息处理来说,这种方法成为通过机械模式在可见光和微波波长之间传输信息的有前途的候选方法。这种操作称为量子转导,构成了实现能够处理量子信息的网络的关键技术要素。然而,微波、可见光和机械这三种模式之间的相互作用强度仍然太弱,无法处理单光子中包含的信息。通过这项研究,我们的目标是进一步推动复杂混合光电机械系统的控制。为了改善机电耦合(微波和机械之间),我们最近展示了一种新颖的方法,其中机械调制电路的电感,与电容耦合相比,提供了一个数量级以上的改进。利用我们方法的多功能性,我们将追求两个主要目标:(i) 传感器和 (ii) 传感器。 (i),我们将开发基于感应机电的量子换能器,旨在达到高单光子效率。这将使量子信息在遥远的量子处理器之间传输成为可能,这是一种通过分布式计算提高量子计算机性能的有前途的方法。 (ii),我们还将致力于使用机电系统进行惯性/加速度传感。事实上,通过实现更大的耦合,可以更快地提取信息,同时减少测量引起的反作用。这种方法特别有希望实现在量子力学定律允许的基本极限下运行的机械传感器,与经典系统相比具有明显的优势。总的来说,通过这个发现计划,我们的目标是开发量子信息处理和传感的关键技术,为在不断发展的行业中创建加拿大初创公司创造机会。此外,对复杂混合系统的研究也将带来有趣的发现,其中量子力学强烈影响介观物体的动力学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juan, Mathieu其他文献

Juan, Mathieu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Juan, Mathieu', 18)}}的其他基金

Optomechanics in the microwave regime for quantum technologies and fundamental sciences
量子技术和基础科学微波领域的光力学
  • 批准号:
    DGECR-2022-00128
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

无线输电关键技术理论与实验研究
  • 批准号:
    60471033
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目
大气下利用微波等离子体处理粮食的实验研究
  • 批准号:
    50477005
  • 批准年份:
    2004
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
非水相微波辐射-酶耦合催化(MIECC)的作用机制
  • 批准号:
    20476038
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Catalytic Microwave Process for Upgrading of Pyrolysis Liquids from Ubiquitous Plastic Wastes
催化微波工艺对无处不在的塑料废物中的热解液进行升级
  • 批准号:
    EP/Y003020/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
  • 批准号:
    2339723
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
CAREER: Tiny Drops of Acid: Microwave Spectroscopy and Isomer-resolved IR Spectroscopy of Hydrohalic Acid-Water Clusters
职业:微小的酸滴:氢卤酸-水簇的微波光谱和异构体分辨红外光谱
  • 批准号:
    2340303
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
STTR Phase I: Microwave-Enhanced Modular Ammonia Synthesis
STTR 第一阶段:微波增强模块化氨合成
  • 批准号:
    2335104
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Next-Generation Solvers for Complex Microwave Engineering Problems
复杂微波工程问题的下一代求解器
  • 批准号:
    DP240102682
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Projects
Catalytic Microwave Process for Upgrading of Pyrolysis Liquids from Ubiquitous Plastic Wastes
催化微波工艺对无处不在的塑料废物中的热解液进行升级
  • 批准号:
    EP/Y001168/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
Catalytic Microwave Process for Upgrading of Pyrolysis Liquids from Ubiquitous Plastic Wastes
催化微波工艺对无处不在的塑料废物中的热解液进行升级
  • 批准号:
    EP/Y001710/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
RII Track-4: NSF: Development of Semiconductor Lasers and Passive Devices on a Single Sapphire Platform for Integrated Microwave Photonics
RII Track-4:NSF:在单个蓝宝石平台上开发用于集成微波光子学的半导体激光器和无源器件
  • 批准号:
    2327229
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Novel and efficient microwave plasma furnace for processing and syngas production
用于加工和合成气生产的新型高效微波等离子炉
  • 批准号:
    ST/Y509966/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
On-chip microwave generation and detection with Josephson photonics
使用约瑟夫森光子学进行片上微波生成和检测
  • 批准号:
    DE240100590
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了