All-Fiber Quantum Optics with Colloidal Nanosemiconductors
具有胶体纳米半导体的全光纤量子光学
基本信息
- 批准号:RGPIN-2020-06986
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optical fibers are now commonly known as the Internet backbone transmitting light, whereas nanomaterials are a tool for customizing matter properties to generate innovative applications; this proposal is a meeting of both technologies towards the long term objective of generating photons on demand for information encoding, directly within optical fibers. A network of such fibers emitting and guiding light quanta, i.e. the photons, would be a step towards a quantum internet progressing from unbreakable cryptography to protect confidential information online. In this context, economists forecast an $8.2 billion quantum technology industry, employing 16 000 Canadians, by 2030. Current sources of single photons are all outside optical fibers, facing light coupling and portability challenges. Moreover, their architecture and most fabrication approaches are not so simple and scalable. These issues will be resolved with luminescent nanocrystal sources in optical fiber that can be easily spliced together. However, colloidal synthesis of semiconductor nanocrystals, namely quantum dots, has yet to deliver reliable quantum technological systems. Therefore, we will kill two birds with one stone by embedding the quantum dots in protective transparent plastic to be heated and drawn into an optical fiber. Indeed, the light emission rate will also accelerate and compete with the quenching of other mechanisms introducing unreliable fluctuations. Firstly, we will demonstrate control of this spontaneous emission rate with different optical fiber designs thanks to the Purcell effect. To verify the effect, photoluminescence decay traces of embedded quantum dot ensembles will be recorded at the fiber output. The concentration of quantum dots will be a key parameter to isolate them apart when drawing the optical fiber, then cutting them out into single photon sources as will be confirmed by their antibunching statistics. Secondly, mirror-like interfaces will be added at the ends of these sources to increase the light-matter coupling and accelerate the light emission even further. Different strategies to fabricate these resonating optical cavities, as found in lasers, will be compared in terms of generating individual and indistinguishable photons. Then, either the cavity modes or the quantum dot energy levels will be tuned into resonance with one another. A spectral anticrossing of levels and modes during tuning would then confirm a strong coupling. Thirdly, looking ahead towards encoding more information on a single photon or achieving more robust encoding on spin states, we will explore new methods to incorporate circular quantum rings and nanodiamonds, comprising nitrogen vacancy centers, in the polymer optical fibers. Finally in the shorter term, the cost-effective nanocrystal synthesis and fiber fabrication motivate the development of innovative sensing applications: an auspicious environment for local technology transfer and student-led entrepreneurship.
光纤现在通常被称为传输光的互联网骨干,而纳米材料是定制物质特性以产生创新应用的工具;该提案是两种技术的结合,其长期目标是直接在光纤中根据信息编码的需要产生光子。由这种光纤组成的网络发射和引导光量子,即光子,将是向量子互联网迈出的一步,从牢不可破的密码技术发展到保护在线机密信息。在此背景下,经济学家预测,到2030年,量子技术产业将达到82亿美元,雇佣1.6万名加拿大人。当前的单光子源都在光纤外部,面临光耦合和便携性的挑战。此外,它们的架构和大多数制造方法都不是那么简单和可扩展的。这些问题将通过光纤中易于拼接的发光纳米晶体光源来解决。然而,半导体纳米晶体的胶体合成,即量子点,尚未提供可靠的量子技术系统。因此,我们将把量子点嵌入保护性透明塑料中,加热并拉入光纤中,从而一举两得。实际上,光发射速率也将加速,并与引入不可靠波动的其他机制的猝灭相竞争。首先,由于Purcell效应,我们将演示用不同的光纤设计来控制这种自发发射率。为了验证这一效应,将在光纤输出端记录嵌入量子点系综的光致发光衰减轨迹。在绘制光纤时,量子点的浓度将是将它们分离的关键参数,然后将它们切割成单个光子源,这将由它们的反聚束统计数据来证实。其次,在这些光源的末端增加镜面界面,增加光-物质耦合,进一步加速光发射。制造这些共振光学腔的不同策略,如在激光器中发现的,将在产生单个和不可区分的光子方面进行比较。然后,空腔模式或量子点能级将被调谐成彼此共振。在调谐过程中,电平和模式的频谱抗交叉将确认强耦合。第三,展望在单个光子上编码更多信息或实现对自旋态的更鲁棒编码,我们将探索在聚合物光纤中加入圆形量子环和包含氮空位中心的纳米金刚石的新方法。最后,在短期内,具有成本效益的纳米晶体合成和纤维制造激发了创新传感应用的发展:为当地技术转让和学生主导的创业创造了有利的环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allen, Claudine其他文献
Allen, Claudine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allen, Claudine', 18)}}的其他基金
All-Fiber Quantum Optics with Colloidal Nanosemiconductors
具有胶体纳米半导体的全光纤量子光学
- 批准号:
RGPIN-2020-06986 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
All-Fiber Quantum Optics with Colloidal Nanosemiconductors
具有胶体纳米半导体的全光纤量子光学
- 批准号:
RGPIN-2020-06986 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Making colloidal nanostructures stable for optical quantum computing with quantum rings, single-electron transistors and frequency comb interferometry.
利用量子环、单电子晶体管和频率梳干涉测量法使胶体纳米结构稳定用于光学量子计算。
- 批准号:
RGPIN-2014-03790 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Making colloidal nanostructures stable for optical quantum computing with quantum rings, single-electron transistors and frequency comb interferometry.
利用量子环、单电子晶体管和频率梳干涉测量法使胶体纳米结构稳定用于光学量子计算。
- 批准号:
RGPIN-2014-03790 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Making colloidal nanostructures stable for optical quantum computing with quantum rings, single-electron transistors and frequency comb interferometry.
利用量子环、单电子晶体管和频率梳干涉测量法使胶体纳米结构稳定用于光学量子计算。
- 批准号:
RGPIN-2014-03790 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Making colloidal nanostructures stable for optical quantum computing with quantum rings, single-electron transistors and frequency comb interferometry.
利用量子环、单电子晶体管和频率梳干涉测量法使胶体纳米结构稳定用于光学量子计算。
- 批准号:
RGPIN-2014-03790 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Making colloidal nanostructures stable for optical quantum computing with quantum rings, single-electron transistors and frequency comb interferometry.
利用量子环、单电子晶体管和频率梳干涉测量法使胶体纳米结构稳定用于光学量子计算。
- 批准号:
RGPIN-2014-03790 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Colloidal versus epitaxial quantum confined systems: the influence of a surface on optoelectronic properties of nanomaterials
胶体与外延量子限制系统:表面对纳米材料光电特性的影响
- 批准号:
356166-2008 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Colloidal versus epitaxial quantum confined systems: the influence of a surface on optoelectronic properties of nanomaterials
胶体与外延量子限制系统:表面对纳米材料光电性质的影响
- 批准号:
356166-2008 - 财政年份:2011
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Colloidal versus epitaxial quantum confined systems: the influence of a surface on optoelectronic properties of nanomaterials
胶体与外延量子限制系统:表面对纳米材料光电性质的影响
- 批准号:
356166-2008 - 财政年份:2010
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Quantum Optics and Optomechanics: From Fundamental Tests To Quantum Tools of the Future
量子光学和光机械:从基础测试到未来的量子工具
- 批准号:
2308969 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Open fiber-based cavity for spectroscopix experiments in semiconductor quantum optics
用于半导体量子光学光谱实验的开放式光纤腔
- 批准号:
517518181 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Major Research Instrumentation
Nonlinear quantum optics using Rydberg excitons
使用里德堡激子的非线性量子光学
- 批准号:
2887904 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Studentship
LEAPS-MPS: Quantum Simulation with Classical Optics
LEAPS-MPS:经典光学的量子模拟
- 批准号:
2316878 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
REU Site: Nanophotonics, Quantum Photonics, and Vision/Biomedical Optics at the University of Rochester.
REU 站点:罗切斯特大学的纳米光子学、量子光子学和视觉/生物医学光学。
- 批准号:
2244031 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Photophysics of Colloidal Semiconductor Nanoplatelets Relevant to Quantum Optics
与量子光学相关的胶体半导体纳米片的光物理学
- 批准号:
2304937 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
CAREER: Observing topological magnetoelectric effects by magneto-optics and quantum transport
职业:通过磁光和量子输运观察拓扑磁电效应
- 批准号:
2143177 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
Quantum Optics with Atomic Ensembles and Arrays
具有原子系综和阵列的量子光学
- 批准号:
2207423 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
Quantum optics and sensing with diamond defects
量子光学和金刚石缺陷传感
- 批准号:
RGPIN-2020-04095 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear quantum optics in integrated structures
集成结构中的非线性量子光学
- 批准号:
572628-2022 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
University Undergraduate Student Research Awards