Illuminating the future of radiotherapy: 3D printed scintillation detectors
照亮放射治疗的未来:3D 打印闪烁探测器
基本信息
- 批准号:RGPIN-2021-03650
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plastic scintillators are near-ideal radiation detectors. They produce light when exposed to radiation, and the light can be collected with an optical reader. Their use is common in radiation therapy and particle physics for high energy x-ray or particle detections. To date, these detectors have not reached their full potential partly because of the limitations in shape and design. Plastic scintillators are available commercially in standard forms such as slabs, cubes, cylinders, spheres, or fibres. Production of good quality scintillators is a time-consuming process that requires specialized expertise, space, and equipment. Typically, a user would have to apply the scintillators as purchased. If customized shapes or light-output characteristics are desired, the purchase could be prohibitively costly. Recent advances in 3D printing technology have resulted in producing a myriad of relatively low-cost consumer-grade printers. 3D printing is ideal for the rapid manufacturing of unique end products or small batches of products with bespoke or complex geometries. The users can rapidly create complex shapes that would otherwise be difficult, costly, and time-consuming to produce by traditional techniques. We aim to apply accessible 3D printing solutions to delivering high-quality and affordable plastic scintillators with custom-designed shape and light-output characteristics. Our immediate application is to use plastic scintillators for reading patients' radiation dose during radiation therapy treatments, the so-called in-vivo dose. Radiation therapy treatments are carefully planned, checked, and verified before the patient comes to the clinic. Still, once the treatment begins, there is most often no direct monitoring of the patient's radiation dose, which can be variable with the patient position, anatomical change, or inadvertent deviations in the treatment unit's performance. We want to integrate 3D printed scintillators into 3D printed devices worn by patients during treatments and read the light produced by radiation. Such routine in-vivo measurements would prevent accidents in radiation therapy, ensure that the intended dose is delivered, and, over time, serve to provide clinicians with invaluable information about the relationships between the outcomes and actual doses. The research and development in this project are also highly valuable in other fields besides medicine. This new technique could open up new possibilities for the field of particle detection. A successful 3D-printed plastic scintillator detector could pave the way for broader use of this technology in detector building, which could shake up the field of high-energy physics where large-scale custom-designed detectors have been prohibitively expensive for most applications. Such accessible large-scale and custom-designed detectors have immediate applications in detection of neutrinos.
塑料闪烁体是近乎理想的辐射探测器。它们在暴露于辐射时会产生光,并且可以用光学读取器收集光。它们通常用于放射治疗和粒子物理学中的高能 X 射线或粒子检测。迄今为止,这些探测器尚未充分发挥其潜力,部分原因是形状和设计的限制。塑料闪烁体可以标准形式商业化购买,例如板状、立方体、圆柱体、球体或纤维。生产优质闪烁体是一个耗时的过程,需要专门的专业知识、空间和设备。通常,用户必须使用所购买的闪烁体。如果需要定制形状或光输出特性,购买成本可能会非常昂贵。 3D 打印技术的最新进展催生了无数相对低成本的消费级打印机。 3D 打印非常适合快速制造独特的最终产品或小批量具有定制或复杂几何形状的产品。用户可以快速创建复杂的形状,否则通过传统技术生产这些形状会很困难、成本高昂且耗时。我们的目标是应用易于使用的 3D 打印解决方案来提供具有定制设计形状和光输出特性的高质量且价格实惠的塑料闪烁体。我们的直接应用是使用塑料闪烁体在放射治疗期间读取患者的辐射剂量,即所谓的体内剂量。在患者来诊所之前,放射治疗是经过仔细计划、检查和验证的。然而,一旦治疗开始,通常不会直接监测患者的辐射剂量,该剂量可能会随着患者位置、解剖结构的变化或治疗装置性能的无意偏差而变化。我们希望将 3D 打印闪烁体集成到患者在治疗期间佩戴的 3D 打印设备中,并读取辐射产生的光。这种常规体内测量将防止放射治疗中发生事故,确保提供预期剂量,并且随着时间的推移,可以为临床医生提供有关结果与实际剂量之间关系的宝贵信息。该项目的研发在医学以外的其他领域也具有很高的价值。这项新技术可以为粒子检测领域开辟新的可能性。成功的 3D 打印塑料闪烁体探测器可以为该技术在探测器构建中的更广泛应用铺平道路,这可能会撼动高能物理领域,在该领域,大规模定制设计的探测器对于大多数应用来说都过于昂贵。这种易于使用的大型定制设计探测器可直接应用于中微子探测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Monajemi, ThalatTheresa其他文献
Monajemi, ThalatTheresa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Monajemi, ThalatTheresa', 18)}}的其他基金
Illuminating the future of radiotherapy: 3D printed scintillation detectors
照亮放射治疗的未来:3D 打印闪烁探测器
- 批准号:
RGPIN-2021-03650 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Illuminating the future of radiotherapy: 3D printed scintillation detectors
照亮放射治疗的未来:3D 打印闪烁探测器
- 批准号:
DGECR-2021-00407 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
相似海外基金
Washington University (WU) ROBIN Center: MicroEnvironment and Tumor Effects Of Radiotherapy (METEOR)
华盛顿大学 (WU) 罗宾中心:放射治疗的微环境和肿瘤效应 (METEOR)
- 批准号:
10715019 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
- 批准号:
10606459 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Development of a prototype clinical theranostic platform combining Magnetic Particle Imaging (MPI) and Magnetic Fluid Hyperthermia (MFH) for the treatment of brain tumors
开发结合磁粒子成像(MPI)和磁流体热疗(MFH)的原型临床治疗平台,用于治疗脑肿瘤
- 批准号:
10761630 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Early response to radiotherapy and immunotherapy in rectal cancer: an integrated molecular, cellular, and spatial approach
直肠癌放疗和免疫治疗的早期反应:综合分子、细胞和空间方法
- 批准号:
10737592 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Molecularly Targeted Radiosensitization of Locally Advanced Cancers
局部晚期癌症的分子靶向放射增敏
- 批准号:
10554470 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
siRNA-based Gold Nanoparticles as a Therapeutic Enhancer for Triple Negative Breast Cancer (TNBC) Radiotherapy
基于 siRNA 的金纳米颗粒作为三阴性乳腺癌 (TNBC) 放射治疗的治疗增强剂
- 批准号:
10729127 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Molecular Strategies to Widen the Therapeutic Index of Radiotherapy
扩大放射治疗治疗指数的分子策略
- 批准号:
10334198 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
ARCHERY: Artificial Intelligence based Radiotherapy treatment planning for Cervical and Head and Neck cancer
ARCHERY:基于人工智能的宫颈癌和头颈癌放射治疗计划
- 批准号:
10415314 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Optimizing Efficiency and Quality of Brachytherapy for Cervical Cancer using Machine Learning Based Automation
使用基于机器学习的自动化优化宫颈癌近距离放射治疗的效率和质量
- 批准号:
10645003 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:














{{item.name}}会员




