Methods for causal analysis of longitudinal data
纵向数据因果分析方法
基本信息
- 批准号:RGPIN-2019-04174
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Some of the most fundamental questions in medical and health research are: "Does a particular treatment make sick patients live longer?" or "Does a particular treatment reduce the number of episodes of sickness and individual experiences?". In some settings these questions can be addressed through the use of a randomized trial however such trials are very expensive and may take many years to complete. An alternative is to try and answer these questions using what is known as observational data. That is, data available from completed studies, registries or databases in which the treatments, outcomes, patient characteristics have been recorded for a group of subjects. This research program is focused on answering these types of questions in settings in which the available data has been repeatedly measured over time. The objective is to create a framework for the analysis of data when the outcome of interest is a recurrent event process and an individual's personal characteristics and treatment histories evolve over time. My team and I will also consider settings in which the outcome of interest is survival time and a recurrent event process forms the exposure or treatment of interest. Accounting for the nonrandomized treatment and complex relationship between the variables requires advanced statistical methodology and we do not currently have adequate methods to handle all possible settings. The methodology to be developed by my team and will not only advance scientific understanding within the field of statistics but can be applied to practical problems anywhere longitudinal data and recurrent events occur. This can range from health related applications (recurrent bouts of disease and/or their association with overall survival), actuarial processes (repeated claims on insurance policies) to industrial applications (recurrent need for repairs affecting the durability or lifetime of a machine). The use of observational data is exciting since it offers the opportunity to benefit from existing data and quickly obtain results. Two doctoral students and five master's students will be trained under this research program helping to meet the growing need for highly trained statisticians and data scientists in Canada.
医学和健康研究中的一些最基本的问题是:“某种特定的治疗方法是否能使病人活得更长?或者“某种特殊的治疗是否减少了疾病发作的次数和个人经历?“".在某些情况下,这些问题可以通过使用随机试验来解决,但这种试验非常昂贵,可能需要多年才能完成。另一种方法是尝试使用所谓的观测数据来回答这些问题。即,已完成研究、登记研究或数据库中的可用数据,其中记录了一组受试者的治疗、结局、患者特征。 这项研究计划的重点是回答这些类型的问题的设置中,可用的数据已被反复测量随着时间的推移。我们的目标是创建一个框架,用于分析数据时,感兴趣的结果是一个经常性的事件过程和个人的个人特征和治疗历史随着时间的推移而演变。我和我的团队还将考虑这样的设置:感兴趣的结果是生存时间,并且重复发生的事件过程形成感兴趣的暴露或治疗。解释非随机化治疗和变量之间的复杂关系需要先进的统计方法,我们目前没有足够的方法来处理所有可能的设置。该方法将由我的团队开发,不仅将促进统计领域内的科学理解,而且可以应用于任何纵向数据和经常性事件发生的实际问题。这可以从与健康相关的应用(疾病的反复发作和/或其与总体生存的关联),精算过程(对保险单的重复索赔)到工业应用(影响机器耐用性或寿命的经常性维修需求)。观测数据的使用令人兴奋,因为它提供了从现有数据中受益并快速获得结果的机会。两名博士生和五名硕士生将在这个研究项目下进行培训,以满足加拿大对训练有素的统计学家和数据科学家日益增长的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cotton, Cecilia其他文献
Correlates of Opioid Use Among Ontario Long-Term Care Residents and Variation by Pain Frequency and Intensity: A Cross-sectional Analysis.
- DOI:
10.1007/s40266-022-00972-9 - 发表时间:
2022-10 - 期刊:
- 影响因子:2.8
- 作者:
Iacono, Anita;Campitelli, Michael A.;Bronskill, Susan E.;Hogan, David B.;Iaboni, Andrea;Maclagan, Laura C.;Gomes, Tara;Tadrous, Mina;Evans, Charity;Gruneir, Andrea;Guan, Qi;Hadjistavropoulos, Thomas;Cotton, Cecilia;Gill, Sudeep S.;Seitz, Dallas P.;Ho, Joanne;Maxwell, Colleen J. - 通讯作者:
Maxwell, Colleen J.
Impact of Early Breast Cancer Screening on Mortality Among Young Survivors of Childhood Hodgkin's Lymphoma
- DOI:
10.1093/jnci/djw010 - 发表时间:
2016-07-01 - 期刊:
- 影响因子:10.3
- 作者:
Hodgson, David C.;Cotton, Cecilia;Nathan, Paul C. - 通讯作者:
Nathan, Paul C.
Cotton, Cecilia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cotton, Cecilia', 18)}}的其他基金
Methods for causal analysis of longitudinal data
纵向数据因果分析方法
- 批准号:
RGPIN-2019-04174 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Methods for causal analysis of longitudinal data
纵向数据因果分析方法
- 批准号:
RGPIN-2019-04174 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Methods for causal analysis of longitudinal data
纵向数据因果分析方法
- 批准号:
RGPIN-2019-04174 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Methods for causal analysis of longitudinal data
纵向数据因果分析方法
- 批准号:
402474-2011 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Methods for causal analysis of longitudinal data
纵向数据因果分析方法
- 批准号:
402474-2011 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Methods for causal analysis of longitudinal data
纵向数据因果分析方法
- 批准号:
402474-2011 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Methods for causal analysis of longitudinal data
纵向数据因果分析方法
- 批准号:
402474-2011 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Methods for causal analysis of longitudinal data
纵向数据因果分析方法
- 批准号:
402474-2011 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Methods for causal analysis of longitudinal data
纵向数据因果分析方法
- 批准号:
402474-2011 - 财政年份:2011
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
使用倾向分(Propensity Score)和主分层(Principal Stratification)进行因果推断
- 批准号:10401003
- 批准年份:2004
- 资助金额:11.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Leveraging Causal Inference and Machine Learning Methods to Advance Evidence-Based Maternal Care and Improve Newborn Health Outcomes
利用因果推理和机器学习方法推进循证孕产妇护理并改善新生儿健康结果
- 批准号:
10604856 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Multiomics data integration methods to discover putative causal variants, genes and patient heterogeneity for Alzheimers disease
多组学数据整合方法发现阿尔茨海默病的假定因果变异、基因和患者异质性
- 批准号:
10587524 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Using Causal Machine Learning Methods to Inform Tobacco Regulatory Science
使用因果机器学习方法为烟草监管科学提供信息
- 批准号:
10662955 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Statistical Methods for Data Integration and Applications to Genome-wide Association Studies
数据集成的统计方法及其在全基因组关联研究中的应用
- 批准号:
10889298 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Computational methods to elucidate the role of long non-coding RNA in Congenital Heart Disease
阐明长非编码RNA在先天性心脏病中作用的计算方法
- 批准号:
10680021 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Statistical methods to characterize causal mechanisms by which air pollution affects the recurrence of cardiovascular events
描述空气污染影响心血管事件复发因果机制的统计方法
- 批准号:
10660281 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Development of High-Precision Geospatial Information Utilization Methods in Urban and Regional Economic Analysis and Their Application to Spatial Causal Inference
城市和区域经济分析中高精度地理空间信息利用方法的发展及其在空间因果推理中的应用
- 批准号:
23K17559 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Developing causal inference methods to evaluate and leverage spillover effects through social Interactions for designing improved HIV prevention interventions
开发因果推理方法,通过社会互动评估和利用溢出效应,设计改进的艾滋病毒预防干预措施
- 批准号:
10762679 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Improving Methods and Practices for Trans-Ethnic Genetic Studies
改进跨种族遗传研究的方法和实践
- 批准号:
10584152 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别: