Towards A Reliable Optimization-based Design Framework for Autonomy and Control of Robotic Systems

面向机器人系统自主和控制的可靠的基于优化的设计框架

基本信息

  • 批准号:
    RGPIN-2022-04940
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The autonomous robotic vehicle systems (ARVs), such as unmanned aerial vehicles, autonomous underwater vehicles and mobile robots, present promising tools to release people from boring, repetitive, or dangerous jobs, and accomplish various meaningful tasks in an efficient, autonomous, and cost-effective way. The complex and dynamic environment in practical ARV application scenarios requires accurate and reliable control of the ARV. However, the autonomous control system based on conventional linear control theories often come with strong assumptions which may not be satisfied in practice and hence lead to poor performances. The difficulty in handling system constraints (such as limited sensing, computing and actuating capabilities) further rules out the possibility of using conventional methods to achieve optimal performance as the optimum is likely to be located on the boundary where the constraints are active. Technically, the control design problems can be formulated as optimization problems. With the optimization setup, it is possible to overcome these limitations and to evolve next-generation ARV technologies. The proposed research program aims to integrate advanced optimization technology in the ARV control and autonomy layer design and address the most challenging issues including: (1) Reliability: Since the optimization solver may fail to give an optimal solution, how do we guarantee the developed optimization-based control system will not be affected by such failures and will achieve the designated control goal? (2) Applicability: Since there exist uncertainties/disturbances in the control process, how do we quantify the relationship between expected performance and the level of uncertainty, based on which we judge whether the control design will meet performance requirement in presence of specified uncertainty? (3) Scalability: The developed framework should be able to guide the control and autonomy layer design not only for a single ARV but also for a team of them, so how can we justify the scalability? (4) Real-Time Control: The optimizations are solved by iterative methods which may take considerable time to converge to a solution. Since robotic systems are fast dynamic systems, a solution needs to be obtained within less than tenth of a second. So how do we design the processing pipeline and/or ad hoc fast optimization algorithms to meet the real-time control requirement? The proposed program will answer the above important questions and develop a novel analysis, synthesis and design toolkit for the ARV control system design; it will improve the reliability and operability of autonomous robotic systems and lower the risks and costs during their operations. Furthermore, this program will benefit the Canadian society by enabling innovative and intelligent robotic applications and provide tremendous opportunities for training HQP for the fast-growing robotics industry in Canada.
自主机器人运载工具系统(autonomous robotic vehicle systems,ARVs),如无人机、自主水下航行器和移动的机器人,为人们从枯燥、重复或危险的工作中解脱出来,以高效、自主和经济的方式完成各种有意义的任务提供了很有前途的工具。ARV在实际应用场景中的复杂动态环境要求对ARV进行准确可靠的控制。然而,基于传统线性控制理论的自主控制系统往往带有很强的假设条件,这些假设条件在实际应用中可能不被满足,从而导致系统性能不佳。处理系统约束(例如有限的感测、计算和致动能力)的困难进一步排除了使用常规方法来实现最佳性能的可能性,因为最佳性能可能位于约束有效的边界上。从技术上讲,控制设计问题可以表述为优化问题。通过优化设置,有可能克服这些限制并发展下一代ARV技术。该研究计划旨在将先进的优化技术集成到ARV控制和自主层设计中,并解决最具挑战性的问题,包括:(1)可靠性:由于优化求解器可能无法给出最优解,我们如何保证开发的基于优化的控制系统不会受到此类故障的影响,并将实现指定的控制目标?(2)适用性:由于控制过程中存在不确定性/干扰,如何量化期望性能与不确定性水平之间的关系,从而判断控制设计在存在指定不确定性的情况下是否满足性能要求?(3)可扩展性:开发的框架应该能够指导控制和自治层的设计,不仅为一个单一的ARV,但也为他们的团队,所以我们如何证明的可扩展性?(4)实时控制:优化通过迭代方法解决,可能需要相当长的时间才能收敛到解决方案。由于机器人系统是快速动态系统,因此需要在不到十分之一秒的时间内获得解决方案。那么,我们如何设计处理流水线和/或ad hoc快速优化算法来满足实时控制要求呢?该计划将回答上述重要问题,并为ARV控制系统设计开发一种新的分析,综合和设计工具包;它将提高自主机器人系统的可靠性和可操作性,并降低其操作过程中的风险和成本。此外,该计划将通过实现创新和智能机器人应用使加拿大社会受益,并为加拿大快速发展的机器人行业提供培训HQP的巨大机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shen, Chao其他文献

Novel synthesis of carbohydrate-derived organocatalysts and their application in asymmetric aldol reactions
碳水化合物衍生有机催化剂的新合成及其在不对称羟醛反应中的应用
  • DOI:
    10.1016/j.catcom.2013.07.011
  • 发表时间:
    2013-11
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Shen, Chao;Liao, Hanxiao;Shen, Fangyi;Zhang, Pengfei
  • 通讯作者:
    Zhang, Pengfei
Leptin induces the apoptosis of chondrocytes in an in vitro model of osteoarthritis via the JAK2-STAT3 signaling pathway
瘦素通过 JAK2STAT3 信号通路在体外骨关节炎模型中诱导软骨细胞凋亡。
  • DOI:
    10.3892/mmr.2016.4970
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Zhang, Zi Ming;Shen, Chao;Sha, Lin
  • 通讯作者:
    Sha, Lin
CarsiDock: a deep learning paradigm for accurate protein-ligand docking and screening based on large-scale pre-training.
Carsidock:基于大规模预训练的精确蛋白质配体对接和筛查的深度学习范式。
  • DOI:
    10.1039/d3sc05552c
  • 发表时间:
    2024-01-24
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Cai, Heng;Shen, Chao;Jian, Tianye;Zhang, Xujun;Chen, Tong;Han, Xiaoqi;Yang, Zhuo;Dang, Wei;Hsieh, Chang-Yu;Kang, Yu;Pan, Peichen;Ji, Xiangyang;Song, Jianfei;Hou, Tingjun;Deng, Yafeng
  • 通讯作者:
    Deng, Yafeng
Effects of RAGE-Specific Inhibitor FPS-ZM1 on Amyloid-β Metabolism and AGEs-Induced Inflammation and Oxidative Stress in Rat Hippocampus
  • DOI:
    10.1007/s11064-015-1814-8
  • 发表时间:
    2016-05-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Hong, Yan;Shen, Chao;Liu, Xueping
  • 通讯作者:
    Liu, Xueping
Joint Beamforming and Power-Splitting Control in Downlink Cooperative SWIPT NOMA Systems
下行链路协作 SWIPT NOMA 系统中的联合波束成形和功率分配控制
  • DOI:
    10.1109/tsp.2017.2715008
  • 发表时间:
    2017-09-15
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Xu, Yanqing;Shen, Chao;Zhong, Zhangdui
  • 通讯作者:
    Zhong, Zhangdui

Shen, Chao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shen, Chao', 18)}}的其他基金

Towards A Reliable Optimization-based Design Framework for Autonomy and Control of Robotic Systems
面向机器人系统自主和控制的可靠的基于优化的设计框架
  • 批准号:
    DGECR-2022-00106
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Optimization-based Design Framework for Autonomy and Control of Robotic Vehicle Systems
基于优化的机器人车辆系统自主和控制设计框架
  • 批准号:
    546057-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Postdoctoral Fellowships

相似海外基金

RAIDO: Reliable AI and Data Optimization
RAIDO:可靠的人工智能和数据优化
  • 批准号:
    10099264
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    EU-Funded
RAIDO: Reliable AI and Data Optimization
RAIDO:可靠的人工智能和数据优化
  • 批准号:
    10093336
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    EU-Funded
Utility of adaptive design optimization for developing rapid and reliable behavioral paradigms for substance use disorders
利用自适应设计优化来开发快速可靠的药物滥用行为范例
  • 批准号:
    10637895
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
CAREER: Demystifying Deep Machine Learning Models using Convex Optimization for Reliable AI
职业:使用凸优化揭开深度机器学习模型的神秘面纱,实现可靠的人工智能
  • 批准号:
    2236829
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Towards A Reliable Optimization-based Design Framework for Autonomy and Control of Robotic Systems
面向机器人系统自主和控制的可靠的基于优化的设计框架
  • 批准号:
    DGECR-2022-00106
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
RUI: Global Optimization of Chance-Constrained Programming for Reliable Process Design
RUI:机会约束编程的全局优化,实现可靠的流程设计
  • 批准号:
    2151497
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Development of High Reliable Optimization System for Asteroid Deflection Missions
小行星偏转任务高可靠优化系统开发
  • 批准号:
    19K15210
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
NeTS: Small: Collaborative Research: Reliable 60 GHz WLANs through Coordination: Measurement, Modeling and Optimization
NeTS:小型:协作研究:通过协调实现可靠的 60 GHz WLAN:测量、建模和优化
  • 批准号:
    1816943
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Design of reliable and efficient communication and computing systems: architecture, code design, and optimization
可靠高效的通信和计算系统的设计:架构、代码设计和优化
  • 批准号:
    436111-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Multi-Objective Optimization of Sensor Placement for Reliable Monitoring and Control of Structures
职业:多目标优化传感器放置以实现结构的可靠监测和控制
  • 批准号:
    1750225
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了