量子群及表示的范畴理论和Yang-Baxter方程的解
结题报告
批准号:
19971074
项目类别:
面上项目
资助金额:
9.5 万元
负责人:
李方
依托单位:
学科分类:
A0104.群与代数的结构
结题年份:
2002
批准年份:
1999
项目状态:
已结题
项目参与者:
卢涤明、张寿传、姜豪、童晓平、倪沈冰、孙培源、张素红、曾庆怡
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
分层次研究几乎双代数,利用它和弱Hopf代数的性质刻划量子(拟)偶及表示范畴和(拟)辩化(预)张量范畴;给出求解Yang-Baxter方程非可逆解的方法并探讨可能的物理实现;酶呶椒ㄑ芯浚猓┍缁ㄔぃ┱帕糠冻氲亩猿菩裕挥肊xcellent扩张研究smash积的胨匦缘取R庖逶谟诶┐罅孔尤杭氨硎痉冻氲难芯糠段В低彻乖靁ang-Baxter方程非可逆解并阐释其意义。
英文摘要
Abstract:In this project, we mainly studied the structure and epresentation of quantum groups and singular solutions of Yang-Baxter Equation through the algebraic method, which.background is in the theory of algebraic deformations and the meaning of quantum groups in physics. The main contents include as follows: the constructure of weak Hopf algebra with one parameter and singular solutions of Yang-Baxter Equation; the structure of quantum quasi-doubles and the categorical theory of their representations; the characterizations of quasi-(co-)braided bialgebras and FRT-Constructures; An improvement of crossed products of Hopf algebras; the.structure of Hopf algebras; fuzzy sub-groupoids. Our major results and their meanings are as follows: getting the constructure of the quasi-quantum enveloping algebras wslq(2) and vslq(2), and moreover from them to obtain singular regular solutions with a parameter of the quantum Yang-Baxter equation;giving a sufficient and.necessary condition for a double biproduct to become a Hopf algebra in a braided tensor category; finding the relation between the quantum double of a Clifford monoid and the quantum doubles of the groups which constructing the Clifford monoid; regular solutions of Yang-Baxter equation are constructed from every quasi-(co-)braided almost bialgebra, conversely, by FRT- constructures,.it is shown that every (singular) solution of Yang-Baxter equationcan be built from a quasi-cobraided bialgebra; the Jacobson radical of a twisted graded algebra is proved to be a graded ideal, then two Fisher’s questions are solved; the homological dimensions of crossed products are studied and it is shown that when H is a finite dimensional semisimple and cosemisimple.Hopf algebra, the weak and global dimensions of R and R#σH are equal to each other; the structure theorem of a right Hopf module Mover a right Hopf algebra H is given as: M.(N.K)⊕(M/Imα), and using of it, a sufficient and necessary is got under which H*rat becomes a right H-Hopf module; a general theory on fuzzy subgroupoids is developed with respect to t-norm, and in particular, a characterization of a fuzzy sub-groupoid, which is induced by a probability space, is given.
专著列表
科研奖励列表
会议论文列表
专利列表
群作用下的核心数学中若干领域的问题的交叉研究(天元数学交流项目)
  • 批准号:
    12026205
  • 项目类别:
    数学天元基金项目
  • 资助金额:
    20.0万元
  • 批准年份:
    2020
  • 负责人:
    李方
  • 依托单位:
丛代数理论中的一些关键问题的研究
  • 批准号:
    LY19A010023
  • 项目类别:
    省市级项目
  • 资助金额:
    0.0万元
  • 批准年份:
    2018
  • 负责人:
    李方
  • 依托单位:
丛代数的结构、范畴化及拓扑不变性研究
  • 批准号:
    11671350
  • 项目类别:
    面上项目
  • 资助金额:
    48.0万元
  • 批准年份:
    2016
  • 负责人:
    李方
  • 依托单位:
丛代数、上同调理论与箭图的拓扑结构
  • 批准号:
    11271318
  • 项目类别:
    面上项目
  • 资助金额:
    60.0万元
  • 批准年份:
    2012
  • 负责人:
    李方
  • 依托单位:
代数表示论方法与弦理论
  • 批准号:
    10871170
  • 项目类别:
    面上项目
  • 资助金额:
    25.0万元
  • 批准年份:
    2008
  • 负责人:
    李方
  • 依托单位:
结合代数的Quiver刻划和Hopf代数表示型分类以及与量子群理论的联系
  • 批准号:
    10571153
  • 项目类别:
    面上项目
  • 资助金额:
    25.0万元
  • 批准年份:
    2005
  • 负责人:
    李方
  • 依托单位:
半群的作用和半群环理论
  • 批准号:
    19501007
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    3.0万元
  • 批准年份:
    1995
  • 负责人:
    李方
  • 依托单位:
国内基金
海外基金