复函数空间理论及其在Rn中的特征研究
批准号:
10371069
项目类别:
面上项目
资助金额:
18.0 万元
负责人:
乌兰哈斯
依托单位:
学科分类:
A0201.单复变函数论
结题年份:
2006
批准年份:
2003
项目状态:
已结题
项目参与者:
娄增建、Aulaskari、陈燕明、李晓南、周继振、詹牧君
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
研究由增函数k与Green 函数复合而构成的一般Qk空间,从本质上揭示Green函数在Qk空间中的作用;寻求新的研究途径和方法,攻克目前尚未解决的某些相关问题;如Qk函数的边界特征,Qk空间的Carleson测度刻画等;利用位势理论,正规族理论和叠代方法等研究与Qk空间相关的复合算子问题,给出其紧性和有界性的判定条件。对Rn上的Qk空间,从实分析的角度, 利用现代调和分析的理论和方法研究该空间的基本特征和结构并给出其函数的实变量刻画。
英文摘要
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:--
发表时间:--
期刊:
影响因子:--
作者:M. Essen, H. Wulan;J. Xiao
通讯作者:J. Xiao
Area inequality and Qp norm
面积不等式和 Qp 范数
DOI:10.1016/j.jfa.2004.12.007
发表时间:2005-04
期刊:Journal of Functional Analysis
影响因子:1.7
作者:R. Aulaskari, H. Chen
通讯作者:R. Aulaskari, H. Chen
Qp spaces and harmonic majoran
Qp 空间和调和马约兰
DOI:--
发表时间:--
期刊:
影响因子:--
作者:R.?Aulaskari, O. Reséndis, F.
通讯作者:R.?Aulaskari, O. Reséndis, F.
Besov spaces on the unit ball
单位球上的贝索夫空间
DOI:--
发表时间:--
期刊:
影响因子:--
作者:
通讯作者:
DOI:--
发表时间:--
期刊:
影响因子:--
作者:X. Li, H. Wulan,
通讯作者:X. Li, H. Wulan,
QK及相关函数空间中的若干重要问题研究
- 批准号:11371234
- 项目类别:面上项目
- 资助金额:55.0万元
- 批准年份:2013
- 负责人:乌兰哈斯
- 依托单位:
QK空间的实变理论研究
- 批准号:11071153
- 项目类别:面上项目
- 资助金额:31.0万元
- 批准年份:2010
- 负责人:乌兰哈斯
- 依托单位:
Qk空间及相关的算子理论研究
- 批准号:10671115
- 项目类别:面上项目
- 资助金额:20.0万元
- 批准年份:2006
- 负责人:乌兰哈斯
- 依托单位:
关于Qp函数空间理论及相关问题研究
- 批准号:10171058
- 项目类别:面上项目
- 资助金额:4.0万元
- 批准年份:2001
- 负责人:乌兰哈斯
- 依托单位:
国内基金
海外基金















{{item.name}}会员


