随机共振与非线性动力学行为的理论及神经放电中的机制
项目介绍
AI项目解读
基本信息
- 批准号:19972051
- 项目类别:面上项目
- 资助金额:18.0万
- 负责人:
- 依托单位:
- 学科分类:A0702.非线性振动及其控制
- 结题年份:2002
- 批准年份:1999
- 项目状态:已结题
- 起止时间:2000-01-01 至2002-12-31
- 项目参与者:江俊; 陈永红; 龚璞林; 周桐; 洪灵; 谭宁; 谢勇;
- 关键词:
项目摘要
The stochastic resonance and the complicated behaviors of chaotic discharge of biologic neurons have become study forefront in nonlinear dynamics and broadly correlative subjects. There are many new phenomena and mechanics needing further search and study. And, in reality, these studies have many important requirements and applications. This project mainly worked on as follows: the relations between stochastic resonance and complicated behavior in nonlinear dynamics, the distinguishing between deterministic and stochastic mechanisms, the mechanism of stochastic resonance in ISI sequences of biologic neurons' firing and the control of stochastic resonance.. The main achievements are listed as follows: (1) The relations between stochastic resonance and the complexity, global characteristics in nonlinear dynamics are revealed. And the new mechanisms that stochastic resonance occurs in dynamic bistable systems and in neighborhood of bifurcation point for nonlinear systems with deterministic forcing and noise are obtained. The mechanisms that stochastic resonance occurs in inside wells and between wells in Duffing oscillator are revealed. The chaotic saddle and new crisis are found. (2) The control method on coherence resonance in excitable neurons, the control on fractal boundaries eroding safe basin and the control on magnetic levitation are provided. (3) The mechanism of spontaneous firing in neurons is revealed. And the distinguishing method on randomization and determination is given and has been applied on real neuron firing experiments. (4) The measurement quantities of stochastic resonance are developed. (5) The theoretical results on stochastic resonance in two-dimensional Brown movement and optical nonlinear systems are given out. (6) The correlative uncertainty in wada basin boundaries and riddled basins are studied. And the hyperchaotic attractor in Kawakami map is also given out.. The achievements have much scientific significance in finding new phenomena, new mechanisms, illuminating the relations of complicated behaviors and uncertainty of nonlinear dynamics with stochastic resonance, putting forward new theory and experimental methods and demonstrating the randomization and determination in biologic neurons firings. And the high-level comments of international authoritative referees for many papers of ours are given. The achievements of this project are a part of Nominating for National Science and Technology Prize of Ministry of Education. When the prize was applied, five academicians or professors appraised it as follows, " it is a high-level basal study and arrive at international advanced level wholly,….., and certain science influences have been brought out.".There are 6 papers published on international journals, 13 papers published on domestic journals, 6 papers read out in internal conferences, 5 papers submitted to journals; and there are 12 papers indexed by SCI and 3 dissertations are completed. And The Nominating for National Science and Technology Prize (Natural Science Prize) Second-Class Prize of Ministry of Education was awarded.
研究非线性动力学行为与随机共振的一些典型的、规律性的联系,某些复杂系统随机共振的理论及生物神经元簇放电随机共振机制,神经元信息传输和编码的确定性和随机性机制,随机共振的度量指标;随机共振的控制理论和实验;探讨生态、机电、能源等领域随机共振的例证。属于学科基础性问题又是学科前沿,有重要的理论意义和广泛的应用潜力。
结项摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--"}}
- 发表时间:{{ item.publish_year || "--" }}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--"}}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ patent.updateTime }}
其他文献
两个非耦合Hindmarsh-Rose神经元同步的非线性特征研究
- DOI:--
- 发表时间:--
- 期刊:物理学报
- 影响因子:--
- 作者:何岱海;吴莹;徐健学;斳伍银
- 通讯作者:斳伍银
非线性动力系统分岔点领域内随机共振的特性
- DOI:--
- 发表时间:--
- 期刊:物理学报
- 影响因子:--
- 作者:徐健学;张广军
- 通讯作者:张广军
未拆分混沌系统恒等自同步研究
- DOI:--
- 发表时间:--
- 期刊:西安交通大学
- 影响因子:--
- 作者:黄显高;黄伟;徐健学
- 通讯作者:徐健学
两个噪声神经元系统的同步振荡
- DOI:--
- 发表时间:--
- 期刊:振动与冲击,26(s),173-174。
- 影响因子:--
- 作者:吴王莹;徐健学;靳武银
- 通讯作者:靳武银
其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--" }}
- 发表时间:{{ item.publish_year || "--"}}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--" }}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}

内容获取失败,请点击重试

查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:
AI项目摘要
AI项目思路
AI技术路线图

请为本次AI项目解读的内容对您的实用性打分
非常不实用
非常实用
1
2
3
4
5
6
7
8
9
10
您认为此功能如何分析更能满足您的需求,请填写您的反馈:
徐健学的其他基金
激变的理论机理与生态和神经生理系统爆发行为的研究
- 批准号:10172067
- 批准年份:2001
- 资助金额:22.0 万元
- 项目类别:面上项目
胞映射方法和非线性控制若干问题的研究
- 批准号:19672046
- 批准年份:1996
- 资助金额:8.0 万元
- 项目类别:面上项目
空间连续和离散非线性动力学系统的时空结构和全局性质
- 批准号:19372044
- 批准年份:1993
- 资助金额:5.5 万元
- 项目类别:面上项目
神经网络非线性动力学行为全局分析及浑沌等复杂性研究
- 批准号:19172052
- 批准年份:1991
- 资助金额:3.0 万元
- 项目类别:面上项目
非线性振荡
- 批准号:18670329
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似国自然基金
{{ item.name }}
- 批准号:{{ item.ratify_no }}
- 批准年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}
相似海外基金
{{
item.name }}
{{ item.translate_name }}
- 批准号:{{ item.ratify_no }}
- 财政年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}