Analytic Number Theory: Exponential Sums in Number Fields

解析数论:数域中的指数和

基本信息

  • 批准号:
    7607021
  • 负责人:
  • 金额:
    $ 2.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1976
  • 资助国家:
    美国
  • 起止时间:
    1976-07-01 至 1978-12-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raghavan Narasimhan其他文献

Bernhard Riemann Remarks on his Life and Work
  • DOI:
    10.1007/s00032-010-0116-5
  • 发表时间:
    2010-03-23
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Raghavan Narasimhan
  • 通讯作者:
    Raghavan Narasimhan

Raghavan Narasimhan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raghavan Narasimhan', 18)}}的其他基金

The Levi Problem and the Dedekind Zeta Function
Levi 问题和 Dedekind Zeta 函数
  • 批准号:
    8002323
  • 财政年份:
    1980
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Exponential Sums in Algebraic Number Fields and the Levi Problem
代数数域中的指数和和列维问题
  • 批准号:
    7801917
  • 财政年份:
    1978
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Several Complex Variables: Moduli Problems and Value Distribuiton Theory
几个复杂变量:模问题和值分布理论
  • 批准号:
    7507548
  • 财政年份:
    1975
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant

相似国自然基金

关于群上的短零和序列及其cross number的研究
  • 批准号:
    11501561
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Analytic Number Theory at the Interface
界面上的解析数论
  • 批准号:
    2401106
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
  • 批准号:
    DP240100186
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Discovery Projects
RII Track-4:NSF: From Analytic Number Theory to Harmonic Analysis
RII Track-4:NSF:从解析数论到调和分析
  • 批准号:
    2229278
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
CAREER: Research in and Pathways to Analytic Number Theory
职业:解析数论的研究和途径
  • 批准号:
    2239681
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Research on p-adic analytic cohomology of algebraic varieties and application to number theory
代数簇的p-adic解析上同调研究及其在数论中的应用
  • 批准号:
    22K13899
  • 财政年份:
    2022
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
  • 批准号:
    RGPIN-2019-04888
  • 财政年份:
    2022
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Statistics and Analytic Number Theory
算术统计与解析数论
  • 批准号:
    RGPIN-2017-06589
  • 财政年份:
    2022
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Discovery Grants Program - Individual
On the Liouville function in short intervals and further topics in analytic number theory
短区间内的刘维尔函数以及解析数论中的进一步主题
  • 批准号:
    567986-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Postdoctoral Fellowships
Analytic number theory and random matrix theory
解析数论和随机矩阵论
  • 批准号:
    RGPIN-2019-05037
  • 财政年份:
    2022
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Discovery Grants Program - Individual
Developing an alternative approach to analytic number theory
开发解析数论的替代方法
  • 批准号:
    RGPIN-2018-04174
  • 财政年份:
    2022
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了