Generalized Linear Dynamical Systems Over Commutative Rings
交换环上的广义线性动力系统
基本信息
- 批准号:8500762
- 负责人:
- 金额:$ 0.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1985
- 资助国家:美国
- 起止时间:1985-01-15 至 1986-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on generalized linear dynamical systems over commutative rings. A realization theory of neutral systems (systems where delays appear in the derivative of the state as well as in the state and/or input-output) is being developed in the context of generalized systems over rings. The concept of an 'absolutely irreducible' realization has been introduced. This concept guarantees that an absolutely irreducible realization of a generic bounded-input-bounded-output stable transfer function is internally stable. In addition, a constructive procedure has been given for computing such realizations.
本课题主要研究交换环上的广义线性动力系统。在环上广义系统的背景下,中立型系统(时滞出现在状态的导数以及状态和/或输入-输出中)的实现理论正在发展。引入了“绝对不可约”实现的概念。这一概念保证了一般有界输入有界输出稳定传递函数的绝对不可约实现是内部稳定的。此外,还给出了计算此类实现的构造性步骤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Spong其他文献
Mark Spong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Spong', 18)}}的其他基金
Collaborative Research: A Control Theoretic Framework for Guided Folding and Unfolding of Protein Molecules
合作研究:蛋白质分子引导折叠和展开的控制理论框架
- 批准号:
2153901 - 财政年份:2022
- 资助金额:
$ 0.65万 - 项目类别:
Standard Grant
Student Travel Support for the 2010 IEEE Conference on Decision and Control. To be Held in Atlanta, Georgia, December 15-17, 2010
2010 年 IEEE 决策与控制会议的学生旅行支持。
- 批准号:
1063815 - 财政年份:2010
- 资助金额:
$ 0.65万 - 项目类别:
Standard Grant
Geometric Methods in the Control of Bipedal Walking Robots
双足行走机器人控制中的几何方法
- 批准号:
0856368 - 财政年份:2009
- 资助金额:
$ 0.65万 - 项目类别:
Standard Grant
Control of Multi-Agent and Networked Systems
多代理和网络系统的控制
- 批准号:
0725433 - 财政年份:2007
- 资助金额:
$ 0.65万 - 项目类别:
Continuing Grant
Passivity Based Control in Bipedal Locomotion
双足运动中基于被动的控制
- 批准号:
0510119 - 财政年份:2005
- 资助金额:
$ 0.65万 - 项目类别:
Standard Grant
Student Travel Support for the 2005 IEEE Conference on Decision and Control
2005 年 IEEE 决策与控制会议学生旅行支持
- 批准号:
0555373 - 财政年份:2005
- 资助金额:
$ 0.65万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Passivity Based Control of Networked Control Systems
美法合作研究:网络控制系统的无源控制
- 批准号:
0128656 - 财政年份:2002
- 资助金额:
$ 0.65万 - 项目类别:
Standard Grant
Collaborative Research: Teleautonomy in Networked Robotic Systems
协作研究:网络机器人系统中的远程自治
- 批准号:
0233314 - 财政年份:2002
- 资助金额:
$ 0.65万 - 项目类别:
Continuing Grant
Workshop on Future Directions on Nonlinear Control of Mechanical Systems. To be Held October 5, 2002, in Monticello, Illinois
机械系统非线性控制未来方向研讨会。
- 批准号:
0228869 - 财政年份:2002
- 资助金额:
$ 0.65万 - 项目类别:
Standard Grant
Layered Control Architectures for Complex Networked Systems
复杂网络系统的分层控制架构
- 批准号:
0122412 - 财政年份:2001
- 资助金额:
$ 0.65万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Quantum Manybody Dynamical Effects in Non-linear Optical Spectroscopy
非线性光谱学中的量子多体动力学效应
- 批准号:
2404788 - 财政年份:2024
- 资助金额:
$ 0.65万 - 项目类别:
Standard Grant
Linear Time-Periodic Dynamical Modeling of Spacecraft Formation Flying
航天器编队飞行的线性时间周期动力学建模
- 批准号:
564254-2021 - 财政年份:2021
- 资助金额:
$ 0.65万 - 项目类别:
University Undergraduate Student Research Awards
EAGER: Exploration of topological self-organizing non-linear dynamical systems with memory as efficient scalable computing fabric
EAGER:探索以内存作为高效可扩展计算结构的拓扑自组织非线性动力系统
- 批准号:
2034558 - 财政年份:2020
- 资助金额:
$ 0.65万 - 项目类别:
Standard Grant
Multifidelity Nonsmooth Optimization and Data-Driven Model Reduction for Robust Stabilization of Large-Scale Linear Dynamical Systems
用于大规模线性动力系统鲁棒稳定的多保真非光滑优化和数据驱动模型简化
- 批准号:
2012250 - 财政年份:2020
- 资助金额:
$ 0.65万 - 项目类别:
Continuing Grant
Analyzing and Exploiting Hybrid Dynamical Systems Containing Piecewise Linear Nonlinearities
分析和利用包含分段线性非线性的混合动力系统
- 批准号:
1902408 - 财政年份:2019
- 资助金额:
$ 0.65万 - 项目类别:
Standard Grant
On optimal test signal design for identifying control-oriented dynamical empirical locally linear-affin multi-models
识别面向控制的动态经验局部线性仿射多模型的最优测试信号设计
- 批准号:
335920452 - 财政年份:2017
- 资助金额:
$ 0.65万 - 项目类别:
Research Grants
Robust Stability of Linear Dynamical Systems: Algorithms, Theory and Applications
线性动力系统的鲁棒稳定性:算法、理论与应用
- 批准号:
1620083 - 财政年份:2016
- 资助金额:
$ 0.65万 - 项目类别:
Continuing Grant
Novel Bayesian linear dynamical systems-based methods for discovering human brain circuit dynamics in health and disease
新颖的——贝叶斯——线性——动态——基于系统的——方法——用于发现——人类——大脑——电路——健康和疾病的动力学
- 批准号:
9170593 - 财政年份:2016
- 资助金额:
$ 0.65万 - 项目类别:
Verification of Linear Dynamical Systems
线性动力系统的验证
- 批准号:
EP/N008197/1 - 财政年份:2016
- 资助金额:
$ 0.65万 - 项目类别:
Fellowship














{{item.name}}会员




